
COMPSCI 690RA: Randomized Algorithms and
Probabilistic Data Analysis

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2022.
Lecture 4

1

Logistics

• Problem Set 1 was due last night – solutions are posted on
the Assignments page.

• Problem Set 2 will be posted by Friday.
• Next week I am away, so the lecture will be held over
Zoom. I encourage you to attend live, but I will also record
it. If you don’t have a good place to Zoom from, you can of
course come to the classroom and attend from there.

• Going forward, I will be posting quizzes a bit later on
Wednesday/Thursday so that I can adapt them better to
what is covered in class.

2

Summary

Last Time:
• Stronger concentration bounds for sums of independent
random variables. I.e., exponential concentration bounds.

• Chernoff and Bernstein bound.

• Application to estimation via sampling and linear probing
analysis.

• Start on randomized hash function and fingerprints.

Today:
• Finish fingerprints and applications to pattern matching and
communication complexity.

• ℓ0 sampling, with applications to graph sketching and streaming.

3

Quiz Question

4

Quiz Question

5

Random Hashing and Fingerprinting

5

Fingerprinting

Random hash functions are often used to reduce large files
down to hash ‘fingerprints’, which can be used to check
equality of files (deduplication), detect updates/corruptions,
etc.

• Key requirement is that two distinct files are unlikely to
have the same hash – low collision probability.

• In practice h is often a deterministic ‘cryptographic’ hash
function like SHA or MD5 – hard to analyze formally. 6

Rabin Fingerprint

Rabin Fingerprint: Interpret a bit string x1, x2, . . . , xn as the binary
representation of the integer x =

∑n
i=1 xi · 2i−1. Let

h(x) = x mod p,

where p is a randomly chosen prime in [1, tn log tn].

Prime Number Theorem: There are ≈ tn log tn
log(tn log tn) = Θ(tn) primes in

[1, tn log tn]. So p is chosen randomly from Θ(tn) possible values.

Claim: For x, y ∈ [0, 2n] with x ̸= y, Pr[h(x) = h(y))] = O(1/t).

• If h(x) = h(y), then it must be that x− y mod p = 0. I.e., p
divides x− y.

• Note: This is not a cryptographic hash function – it is relatively
easy to find x, y with h(x) = h(y) given p, or blackbox access to
h. However, this is fine in many applications.

7

Rabin Fingerprint Analysis

Think-Pair-Share 1: How many unique prime factors can an
integer in [−2n, 2n] have?

Think-Pair-Share 2: What is the probability that a random
prime p chosen from [1, tn log tn] divides x− y ∈ [−2n, 2n]?
Recall: There are Θ(tn) primes in the range [1, tn log tn].

8

Application 1: Communication Complexity

8

Fingerprinting for Equality Testing

Equality Testing Communication Problem: Alice has some bit
string a ∈ {0, 1}n. Bob has some string b ∈ {0, 1}n. How many
bits do they need to communicate to determine if a = b with
probability at least 2/3?

9

Fingerprinting for Equality Testing

Equality Testing Protocol:

• Alice picks a random prime p ∈ [1, tn log tn] for some large
constant t.

• Alice sends p, along with the Rabin fingerprint h(a) := a
mod p to Bob. [O(logp) = O(logn) bits]

• Bob uses p to compute h(b) := b mod p.
• If h(a) = h(b), Bob sends ‘YES’ to Alice. Else, he sends ‘No’.
[1 bit]

Correctness: If a = b both Alice and Bob always output ‘YES’. If
a ̸= b they output ‘NO’ with probability 1− O(1/t) ≥ 2/3 if t is
set large enough.

Complexity: Uses just O(logp) = O(logn) bits of
communication in total. 10

Deterministic Equality Testing

How many bits must Alice and Bob send if they want to check
equality of a,b ∈ {0, 1}n without using randomness?

Claim: Any deterministic protocol for equality testing requires
sending Ω(n) bits.

• An exponential separation between randomized and
deterministic protocols!

• Unlike for running times, for communication complexity
problems there are often large provable separations
between randomized and deterministic protocols.

11

Deterministic Equality Testing Lower Bound

Claim: Any deterministic protocol for equality testing requires
sending Ω(n) bits.

• Assume without loss of generality that Alice and Bob alternate
sending 1 bit at a time – at most doubles the number of bits.

• If Alice and Bob send s < n bits, in total, there are 2s possible
conversations they may have.

12

Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2s possible
conversations they may have.

• Since there are 2n > 2s possible inputs, there must be two
different inputs v1 ̸= v2, such that given a = b = v1 or a = b = v2,
the protocol outputs ‘YES’ and has identical transcripts.

• But then the players will send the same messages and output
‘YES’ also when Alice is given a = v1 and Bob is given b = v2.
This violates correctness!

13

Application 2: Pattern Matching

13

Pattern Matching

Given some document x = x1x2 . . . xn and a pattern
y = y1y2 . . . ym, find some j such that

xjxj+1, . . . , xj+m−1 = y1y2 . . . ym.

Can assume without loss of generality that the strings are
binary strings.

What is the ‘naive’ running time required to solve this problem?

14

Rolling Hash

We will use the fact that the Rabin fingerprint is a rolling hash.

• Letting Xj =
∑m−1

i=0 xj+i · 2m−1−i be the integer value
represented by the binary string xjxj+1, . . . , xj+m−1, we have

Xj+1 = 2 · Xj − 2mxj + xj+m.

• Thus, since for any X, h(X) = X mod p,

h(Xj+1) = 2 · h(Xj)− 2mxj + xj+m mod p.

• Given h(Xj), this hash value can be computed using just
O(1) arithmetic operations.

15

Rabin-Karp Algorithm

The Rabin-Karp pattern matching algorithm is then:

• Pick a random prime p ∈ [1, tm logmt], for t = cn.
• Let Y = h(y) be the Rabin fingerprint of the pattern.
• Let H = h(X1) be the Rabin fingerprint of the first block of
text.

• For j = 1, . . . , xn−m+1
• If Y == H, return j.
• Else, H = 2 · H− 2mxj + xj+m mod p.

Runtime: Takes O(m+ n) time in total. O(m) for the initial
hash computations, and O(1) for each iteration of the for loop.

Correctness: The probability of a false positive at any step is
upper bounded by 1

t =
1
cn . Thus, via a union bound, the

probably of a false positive overall is at most n
cn = 1

c .
16

Questions on Random Hashing?

Interesting topics I am not covering:

• Constructions of universal hash functions.
• Constructions of k-wise independent hash functions.
• Concentration bounds and hash table analysis using
k-wise independent hash functions. See Lectures 3-4 of
Jelani Nelson’s course notes for some material on this
(link on schedule page).

• Connections to pseudorandom number generators (PRGs).

17

ℓ0 Sampling and Graph Sketching

17

A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want
to send messages to a central server, who will then determine if the
graph is connected.

How large of messages (# bits) are needed to determine
connectivity with high probability?

18

A Hard Case

• Surprisingly, for any input graph, the problem can be
solved with high probability using just O(logc n) bits per
message!

• Solution will be based on a random linear sketch.

19

Key Ingredient 1: ℓ0 Sampling

Theorem: There exists a distribution over random matrices
A ∈ ZO(log2 n)×n such that for any fixed x ∈ Zn, with probability at least
1− 1/nc, we can learn (i, xi) for some xi ̸= 0 from Ax.

Useful Property 1: Given t vectors x1, . . . , xt ∈ Zn, can recover a
nonzero entry from each with probability ≥ 1− t/nc.

Useful Property 2: Given sketches Ax1 and Ax2, can easily compute
A(x1 + x2) and recover a nonzero entry from x1 + x2 with high
probability. 20

Key Ingredient 2: Boruvka’s Algorithm

1. Initialize each node as its own connected component.

2. For each connected component, select an outgoing edge. Merge
any newly connected components.

3. Repeat until no connected component has an outgoing edge. If
at this point, all nodes are in the same component, then the
graph is connected.

Converges in ≤ log2 n rounds.
21

Key Ingredient 3: Neighborhood Sketches

Each node i, can compute a vector vi ∈ Z(
n
2). vi has a ±1 for every

edge in the graph and incident to node i. +1 is used for edges (i, j)
and −1 for edges (j, i).

• Given an ℓ0 sampling matrix A ∈ ZO(log
2 n)×(n2), each node can

compute Avi ∈ ZO(log2 n) and send it to the central server.

• Using these sketches, with probability ≥ 1− 1/nc, the central
server can identify one edge incident to each node – i.e., they
can simulate the first iteration of Boruvka’s algorithm.

22

Simulating Boruvka’s Algorithm via Sketches

• For independent ℓ0 sampling matrices A1, . . . ,Alog2 n, each node
computes Ajvi and sends these sketches to the central server.
O(logc n) bits in total.

• The central server uses A1v1, . . . ,A1vn to simulate the first step
of Boruvka’s algorithm.

• For each subsequent step j, let S1, S2, . . . Sc be the current
connected components. Observe that

∑
i∈Sk vi has non-zero

entries corresponding exactly to the outgoing edges of Sk.

• So, from Aj
∑

i∈Sk vi =
∑

i∈Sk Ajvi, the server can find an outgoing
edge from each connected component Sk. Thus, the server can
simulate the jth round of Boruvka’s algorithm.

• Overall, using the log2 n different sketches from each node, the
server can simulate the full algorithm and determine with high
probability if the graph is connected or not.

23

Implementing ℓ0 Sampling

23

ℓ0 Sampling Construction

Theorem: There exists a distribution over random matrices
A ∈ ZO(log2 n)×n such that for any fixed x ∈ Zn, with probability at least
1− 1/nc, we can learn (i, xi) for some xi ̸= 0 from Ax.

Construction:

• Let S0, S1, . . . , Slog2 n be random subsets of [n]. Each element is
included in Sj independently with probability 1/2j.

• For each Sj, compute aj =
∑

i∈Sj xi, bj =
∑

i∈Sj xi · i and
cj =

∑
i∈Sj xi · r

i mod p, where r is a random value in [p] and p is
a prime with p ≥ nc for some large constant c.

• Exercise: Show that the vector
[a1, . . . ,alog2 n,b1, . . . ,blog2 n, c1, . . . , clog2 n] can be written as Ax,
where A ∈ Z3 log2 n×n is a random matrix.

24

Construction Intuition

We will recover a nonzero element from a sampling level when
there is exactly one nonzero element at that level.

With good probability, there is will exactly one element at
some level. Can improve success probability via repetition.

25

Recovering Unique Nonzeros

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.
aj =

∑
i∈Sj xi, bj =

∑
i∈Sj xi · i and cj =

∑
i∈Sj xi · r

i mod p, where r is a
random value in [p] and p = nc for large enough constant c.

Claim 1: If there is a unique i ∈ Sj with xi ̸= 0, then aj = xi and
bj = xi · i. So, from these quantities we can exactly determine (i, xj).

Claim 2: cj lets us test if there is a unique such i. In particular, we
check that bjaj ∈ [n] and that cj = aj · rbj/aj mod p.

• If there is a unique i ∈ Sj with xi ̸= 0, the test passes.

• If not, it fails with probability at most np = 1
nc−1 .

The problem of recovering a unique i ∈ Sj with xi ̸= 0 is called
1-sparse recovery.

26

Recovering Unique Nonzeros

Claim 2: cj lets us test if there is a unique such i. In particular, we
check that bjaj ∈ [n] and that cj = aj · rbj/aj mod p.

• If there is a unique i ∈ Sj with xi ̸= 0, the test passes.

• If not, it fails with probability at most np ≤ 1
nc−1 .

Proof via polynomial identity testing: If |{i ∈ Sj : xi ̸= 0}| > 1, then

p(r) = cj − ajrbj/aj mod p =
∑
i∈Sj

xiri − ajrbj/aj mod p

is a non-zero polynomial of degree at most n over Zp.

• This polynomial has ≤ n roots, so for a random r ∈ [p],
Pr[p(r) = 0] ≤ n

p .

• Thus, cj = ajrbj/aj with probability ≤ n
p ≤ 1

nc−1 .

27

Completing The Analysis

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.

• If any Sj contains a unique i with xi ≠ 0, we will recover it.

• It remains to show that with good probability, at least one Sj
contains such an i.

Claim: For j with 2j−2 ≤ ∥x∥0 ≤ 2j−1, Pr[|{i ∈ Sj : xi ̸= 0}| = 1] ≥ 1/8.

Pr[|{i ∈ Sj : xi ̸= 0}| = 1] = ∥x∥0 ·
1
2j

·
(
1− 1

2j

)∥x∥0−1

≥ ∥x∥0
2j

(
1− ∥x∥0

2j

)
≥ 1
4 ·

(
1− 1

2

)
=
1
8 .

If we repeat the whole process t = O(logn) times, with probability
≥ 1− 1/nc we will recover some nonzero element of x. In total, A is a
random matrix with t · log2 n = O(log2 n) rows.

28

