COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2022.
Lecture 4
Logistics

- Problem Set 1 was due last night – solutions are posted on the Assignments page.
- Problem Set 2 will be posted by Friday.
- Next week I am away, so the lecture will be held over Zoom. I encourage you to attend live, but I will also record it. If you don’t have a good place to Zoom from, you can of course come to the classroom and attend from there.
- Going forward, I will be posting quizzes a bit later on Wednesday/Thursday so that I can adapt them better to what is covered in class.
Last Time:

- Stronger concentration bounds for sums of independent random variables. I.e., exponential concentration bounds.
- Chernoff and Bernstein bound.
- Application to estimation via sampling and linear probing analysis.
- Start on randomized hash function and fingerprints.
Summary

Last Time:

- Stronger concentration bounds for sums of independent random variables. I.e., exponential concentration bounds.
- Chernoff and Bernstein bound.
- Application to estimation via sampling and linear probing analysis.
- Start on randomized hash function and fingerprints.

Today:

- Finish fingerprints and applications to pattern matching and communication complexity.
- ℓ_0 sampling, with applications to graph sketching and streaming.
You roll a fair 6-sided die n times independently. You look at the difference between the number of times you rolled a "1" the number of times you rolled a "2". Roughly, how big do we expect this difference to be in magnitude?

- a. $\Theta(n)$
- b. $\Theta(\sqrt{n})$
- c. $\Theta(\log n)$
- d. $\Theta\left(\frac{\log n}{\log \log n}\right)$
You roll a fair 6-sided die \(n \) times independently. Let \(S \) be the sum of rolls. \(\mathbb{E}[S] = 3.5n \). What is the smallest threshold \(t \) for which \(Pr[|S - 3.5n| > t] \leq 1/n \)?

- a. \(O(\log n) \)
- b. \(O(n \log n) \)
- c. \(O(\sqrt{n \cdot \log n}) \)
- d. \(O(\sqrt{n} \cdot \log n) \)
- e. \(O(\sqrt{n}) \)
Random Hashing and Fingerprinting
Fingerprinting

Random hash functions are often used to reduce large files down to hash ‘fingerprints’, which can be used to check equality of files (deduplication), detect updates/corruptions, etc.

- Key requirement is that two distinct files are unlikely to have the same hash – low collision probability.
- In practice, h is often a deterministic 'cryptographic' hash function like SHA or MD5 – hard to analyze formally.
Fingerprinting

Random hash functions are often used to reduce large files down to hash ‘fingerprints’, which can be used to check equality of files (deduplication), detect updates/corruptions, etc.

- Key requirement is that two distinct files are unlikely to have the same hash – low collision probability.
Random hash functions are often used to reduce large files down to hash ‘fingerprints’, which can be used to check equality of files (deduplication), detect updates/corruptions, etc.

- Key requirement is that two distinct files are unlikely to have the same hash – low collision probability.
- In practice h is often a deterministic ‘cryptographic’ hash function like SHA or MD5 – hard to analyze formally.
Rabin Fingerprint: Interpret a bit string \(x_1, x_2, \ldots, x_n\) as the binary representation of the integer \(x = \sum_{i=1}^{n} x_i \cdot 2^{i-1}\). Let

\[h(x) = x \mod p, \]

where \(p\) is a randomly chosen prime in \([1, tn \log tn]\).

Prime Number Theorem: There are \(\approx \frac{tn \log tn}{\log(tn \log tn)} = \Theta(tn)\) primes in \([1, tn \log tn]\). So \(p\) is chosen randomly from \(\Theta(tn)\) possible values.

Claim: For \(x, y \in [0, 2^n]\) with \(x \neq y\), \(\Pr[h(x) = h(y)] = O(1/t)\).
Rabin Fingerprint: Interpret a bit string x_1, x_2, \ldots, x_n as the binary representation of the integer $x = \sum_{i=1}^{n} x_i \cdot 2^{i-1}$. Let

$$h(x) = x \mod p,$$

where p is a randomly chosen prime in $[1, tn \log tn]$.

Prime Number Theorem: There are $\approx \frac{tn \log tn}{\log(tn \log tn)} = \Theta(tn)$ primes in $[1, tn \log tn]$. So p is chosen randomly from $\Theta(tn)$ possible values.

Claim: For $x, y \in [0, 2^n]$ with $x \neq y$, $\Pr[h(x) = h(y)] = O(1/t)$.

- If $h(x) = h(y)$, then it must be that $x - y \mod p = 0$. I.e., p divides $x - y$.
Rabin Fingerprint: Interpret a bit string \(x_1, x_2, \ldots, x_n \) as the binary representation of the integer \(x = \sum_{i=1}^{n} x_i \cdot 2^{i-1} \). Let

\[h(x) = x \mod p, \]

where \(p \) is a randomly chosen prime in \([1, t_n \log t_n]\).

Prime Number Theorem: There are \(\approx \frac{t_n \log t_n}{\log(t_n \log t_n)} = \Theta(t_n) \) primes in \([1, t_n \log t_n]\). So \(p \) is chosen randomly from \(\Theta(t_n) \) possible values.

Claim: For \(x, y \in [0, 2^n] \) with \(x \neq y \), \(\Pr[h(x) = h(y)] = O(1/t) \).

- If \(h(x) = h(y) \), then it must be that \(x - y \mod p = 0 \). I.e., \(p \) divides \(x - y \).

- **Note:** This is **not** a cryptographic hash function – it is relatively easy to find \(x, y \) with \(h(x) = h(y) \) given \(p \), or blackbox access to \(h \). However, this is fine in many applications.
Think-Pair-Share 1: How many unique prime factors can an integer in $[-2^n, 2^n]$ have?

Think-Pair-Share 2: What is the probability that a random prime p chosen from $[1, t n \log t n]$ divides $x - y \in [-2^n, 2^n]$? Recall: There are $\Theta(t n)$ primes in the range $[1, t n \log t n]$.
Application 1: Communication Complexity
Equality Testing Communication Problem: Alice has some bit string \(a \in \{0,1\}^n \). Bob has some string \(b \in \{0,1\}^n \). How many bits do they need to communicate to determine if \(a = b \) with probability at least \(2/3 \)?
Equality Testing Protocol:

- Alice picks a random prime $p \in [1, tn \log tn]$ for some large constant t.
- Alice sends p, along with the Rabin fingerprint $h(a) := a \mod p$ to Bob.
- Bob uses p to compute $h(b) := b \mod p$.
- If $h(a) = h(b)$, Bob sends ‘YES’ to Alice. Else, he sends ‘No’.

Correctness: If $a = b$, both Alice and Bob always output ‘YES’. If $a \neq b$ they output ‘NO’ with probability $O\left(\frac{1}{t^2}\right)$ if t is set large enough.

Complexity: Uses just $O(\log p) = O(\log n)$ bits of communication in total.
Fingerprinting for Equality Testing

Equality Testing Protocol:

- Alice picks a random prime \(p \in [1, tn \log tn] \) for some large constant \(t \).
- Alice sends \(p \), along with the Rabin fingerprint \(h(a) := a \mod p \) to Bob.
- Bob uses \(p \) to compute \(h(b) := b \mod p \).
- If \(h(a) = h(b) \), Bob sends ‘YES’ to Alice. Else, he sends ‘No’.

Correctness: If \(a = b \) both Alice and Bob always output ‘YES’. If \(a \neq b \) they output ‘NO’ with probability \(1 - O(1/t) \geq 2/3 \) if \(t \) is set large enough.
Fingerprinting for Equality Testing

Equality Testing Protocol:

• Alice picks a random prime $p \in [1, tn \log tn]$ for some large constant t.
• Alice sends p, along with the Rabin fingerprint $h(a) := a \mod p$ to Bob.
• Bob uses p to compute $h(b) := b \mod p$.
• If $h(a) = h(b)$, Bob sends ‘YES’ to Alice. Else, he sends ‘No’.

Correctness: If $a = b$ both Alice and Bob always output ‘YES’. If $a \neq b$ they output ‘NO’ with probability $1 - O(1/t) \geq 2/3$ if t is set large enough.

Complexity:
Fingerprinting for Equality Testing

Equality Testing Protocol:

• Alice picks a random prime \(p \in [1, tn \log tn] \) for some large constant \(t \).
• Alice sends \(p \), along with the Rabin fingerprint \(h(a) := a \mod p \) to Bob. \([O(\log p) = O(\log n) \text{ bits}]\)
• Bob uses \(p \) to compute \(h(b) := b \mod p \).
• If \(h(a) = h(b) \), Bob sends ‘YES’ to Alice. Else, he sends ‘No’. \([1 \text{ bit}]\)

Correctness: If \(a = b \) both Alice and Bob always output ‘YES’. If \(a \neq b \) they output ‘NO’ with probability \(1 - O(1/t) \geq 2/3 \) if \(t \) is set large enough.

Complexity: Uses just \(O(\log p) = O(\log n) \) bits of communication in total.
Deterministic Equality Testing

How many bits must Alice and Bob send if they want to check equality of $a, b \in \{0, 1\}^n$ without using randomness?
Deterministic Equality Testing

How many bits must Alice and Bob send if they want to check equality of $a, b \in \{0, 1\}^n$ without using randomness?

Claim: Any deterministic protocol for equality testing requires sending $\Omega(n)$ bits.
How many bits must Alice and Bob send if they want to check equality of \(a, b \in \{0, 1\}^n\) without using randomness?

Claim: Any deterministic protocol for equality testing requires sending \(\Omega(n)\) bits.

- An exponential separation between randomized and deterministic protocols!
- Unlike for running times, for communication complexity problems there are often large provable separations between randomized and deterministic protocols.
Claim: Any deterministic protocol for equality testing requires sending $\Omega(n)$ bits.

- Assume without loss of generality that Alice and Bob alternate sending 1 bit at a time – at most doubles the number of bits.
Claim: Any deterministic protocol for equality testing requires sending $\Omega(n)$ bits.

- Assume without loss of generality that Alice and Bob alternate sending 1 bit at a time – at most doubles the number of bits.
- If Alice and Bob send $s < n$ bits, in total, there are 2^s possible conversations they may have.

```
\[ a = 100100111001 \quad b = 100100111011 \]
```

- Alice to Bob: 1
- Bob to Alice: 0
- ...
- Alice to Bob: 0
- Full Transcript: 10111000010
- $s < n$ bits
Deterministic Equality Testing Lower Bound

If Alice and Bob send $s < n$ bits, in total, there are 2^s possible conversations they may have.

- Since there are $2^n > 2^s$ possible inputs, there must be two different inputs $v_1 \neq v_2$, such that given $a = b = v_1$ or $a = b = v_2$, the protocol outputs 'YES' and has identical transcripts.

- But then the players will send the same messages and output 'YES' also when Alice is given $a = v_1$ and Bob is given $b = v_2$.

This violates correctness!
If Alice and Bob send $s < n$ bits, in total, there are 2^s possible conversations they may have.

- Since there are $2^n > 2^s$ possible inputs, there must be two different inputs $v_1 \neq v_2$, such that given $a = b = v_1$ or $a = b = v_2$, the protocol outputs ‘YES’ and has identical transcripts.
Deterministic Equality Testing Lower Bound

If Alice and Bob send $s < n$ bits, in total, there are 2^s possible conversations they may have.

- Since there are $2^n > 2^s$ possible inputs, there must be two different inputs $v_1 \neq v_2$, such that given $a = b = v_1$ or $a = b = v_2$, the protocol outputs ‘YES’ and has identical transcripts.
Deterministic Equality Testing Lower Bound

If Alice and Bob send $s < n$ bits, in total, there are 2^s possible conversations they may have.

- Since there are $2^n > 2^s$ possible inputs, there must be two different inputs $v_1 \neq v_2$, such that given $a = b = v_1$ or $a = b = v_2$, the protocol outputs ‘YES’ and has identical transcripts.
Deterministic Equality Testing Lower Bound

If Alice and Bob send $s < n$ bits, in total, there are 2^s possible conversations they may have.

- Since there are $2^n > 2^s$ possible inputs, there must be two different inputs $v_1 \neq v_2$, such that given $a = b = v_1$ or $a = b = v_2$, the protocol outputs ‘YES’ and has identical transcripts.
- But then the players will send the same messages and output ‘YES’ also when Alice is given $a = v_1$ and Bob is given $b = v_2$. This violates correctness!
If Alice and Bob send $s < n$ bits, in total, there are 2^s possible conversations they may have.

- Since there are $2^n > 2^s$ possible inputs, there must be two different inputs $v_1 \neq v_2$, such that given $a = b = v_1$ or $a = b = v_2$, the protocol outputs ‘YES’ and has identical transcripts.

- But then the players will send the same messages and output ‘YES’ also when Alice is given $a = v_1$ and Bob is given $b = v_2$. This violates correctness!
Application 2: Pattern Matching
Given some document $x = x_1x_2 \ldots x_n$ and a pattern $y = y_1y_2 \ldots y_m$, find some j such that

$$x_jx_{j+1}, \ldots, x_{j+m-1} = y_1y_2 \ldots y_m.$$

Can assume without loss of generality that the strings are binary strings.
Pattern Matching

Given some document \(x = x_1x_2 \ldots x_n \) and a pattern \(y = y_1y_2 \ldots y_m \), find some \(j \) such that

\[
x_jx_{j+1}, \ldots, x_{j+m-1} = y_1y_2 \ldots y_m.
\]

Can assume without loss of generality that the strings are binary strings.

What is the ‘naive’ running time required to solve this problem?

\(x = \) The quick brown fox jumped across the pond...

\(y = \) fox
We will use the fact that the Rabin fingerprint is a rolling hash.
Rolling Hash

We will use the fact that the Rabin fingerprint is a rolling hash.

- Letting \(X_j = \sum_{i=0}^{m-1} x_{j+i} \cdot 2^{m-1-i} \) be the integer value represented by the binary string \(x_jx_{j+1}, \ldots, x_{j+m-1} \), we have

\[
X_{j+1} = 2 \cdot X_j - 2^m x_j + x_{j+m}.
\]
We will use the fact that the Rabin fingerprint is a rolling hash.

- Letting \(X_j = \sum_{i=0}^{m-1} x_{j+i} \cdot 2^{m-1-i} \) be the integer value represented by the binary string \(x_j x_{j+1}, \ldots, x_{j+m-1} \), we have
 \[
 X_{j+1} = 2 \cdot X_j - 2^m x_j + x_{j+m}.
 \]

- Thus, since for any \(X \), \(h(X) = X \mod p \),
 \[
 h(X_{j+1}) = 2 \cdot h(X_j) - 2^m x_j + x_{j+m} \mod p.
 \]

- Given \(h(X_j) \), this hash value can be computed using just \(O(1) \) arithmetic operations.
The Rabin-Karp pattern matching algorithm is then:

- Pick a random prime \(p \in [1, tm \log mt] \), for \(t = cn \).
- Let \(Y = h(y) \) be the Rabin fingerprint of the pattern.
- Let \(H = h(X_1) \) be the Rabin fingerprint of the first block of text.
- For \(j = 1, \ldots, x_{n-m+1} \)
 - If \(Y == H \), return \(j \).
 - Else, \(H = 2 \cdot H - 2^m x_j + x_{j+m} \mod p \).

Runtime: Takes \(O(m + n) \) time in total. \(O(m) \) for the initial hash computations, and \(O(1) \) for each iteration of the for loop.

Correctness: The probability of a false positive at any step is upper bounded by \(\frac{1}{t \cdot cn} \). Thus, via a union bound, the probability of a false positive overall is at most \(\frac{n \cdot cn}{c} \).
Rabin-Karp Algorithm

The Rabin-Karp pattern matching algorithm is then:

- Pick a random prime \(p \in [1, tm \log mt] \), for \(t = cn \).
- Let \(Y = h(y) \) be the Rabin fingerprint of the pattern.
- Let \(H = h(X_1) \) be the Rabin fingerprint of the first block of text.
- For \(j = 1, \ldots, n-m+1 \)
 - If \(Y == H \), return \(j \).
 - Else, \(H = 2 \cdot H - 2^m x_j + x_{j+m} \mod p \).

Runtime: Takes \(O(m+n) \) time in total. \(O(m) \) for the initial hash computations, and \(O(1) \) for each iteration of the for loop.

Correctness: The probability of a false positive at any step is upper bounded by \(\frac{1}{t} = \frac{1}{cn} \). Thus, via a union bound, the probably of a false positive overall is at most \(\frac{n}{cn} = \frac{1}{c} \).
Questions on Random Hashing?

Interesting topics I am not covering:

• Constructions of universal hash functions.
• Constructions of k-wise independent hash functions.
• Concentration bounds and hash table analysis using k-wise independent hash functions. See Lectures 3-4 of Jelani Nelson's course notes for some material on this (link on schedule page).
• Connections to pseudorandom number generators (PRGs).
Questions on Random Hashing?

Interesting topics I am not covering:

- Constructions of universal hash functions.
- Constructions of k-wise independent hash functions.
- Concentration bounds and hash table analysis using k-wise independent hash functions. See Lectures 3-4 of Jelani Nelson’s course notes for some material on this (link on schedule page).
- Connections to pseudorandom number generators (PRGs).
l_0 Sampling and Graph Sketching
A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.
Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.
A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.

How large of messages (# bits) are needed to determine connectivity with high probability?
Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.

A Graph Communication Problem
A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.

How large of messages (# bits) are needed to determine connectivity with high probability?
Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.
A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.

How large of messages (# bits) are needed to determine connectivity with high probability?
Surprisingly, for any input graph, the problem can be solved with high probability using just $O(\log c n)$ bits per message!

Solution will be based on a random linear sketch.
Surprisingly, for any input graph, the problem can be solved with high probability using just $O(\log^c n)$ bits per message!
Surprisingly, for any input graph, the problem can be solved with high probability using just $O(\log^c n)$ bits per message!

Solution will be based on a random linear sketch.
Key Ingredient 1: ℓ_0 Sampling

Theorem: There exists a distribution over random matrices $A \in \mathbb{Z}^{O(\log^2 n) \times n}$ such that for any fixed $x \in \mathbb{Z}^n$, with probability at least $1 - 1/n^c$, we can learn (i, x_i) for some $x_i \neq 0$ from Ax.
Key Ingredient 1: ℓ_0 Sampling

Theorem: There exists a distribution over random matrices $A \in \mathbb{Z}^{O(\log^2 n) \times n}$ such that for any fixed $x \in \mathbb{Z}^n$, with probability at least $1 - 1/n^c$, we can learn (i, x_i) for some $x_i \neq 0$ from Ax.

Random sketching matrix A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-2</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

$A x =$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Useful Property 1: Given t vectors $x_1, \ldots, x_t \in \mathbb{Z}^n$, can recover a nonzero entry from each with probability $1/t = n^c$.

Useful Property 2: Given sketches $A x_1$ and $A x_2$, can easily compute $A (x_1 + x_2)$ and recover a nonzero entry from $x_1 + x_2$ with high probability.
Key Ingredient 1: \(\ell_0 \) Sampling

Theorem: There exists a distribution over random matrices \(A \in \mathbb{Z}^{O(\log^2 n) \times n} \) such that for any fixed \(x \in \mathbb{Z}^n \), with probability at least \(1 - 1/n^c \), we can learn \((i, x_i)\) for some \(x_i \neq 0 \) from \(Ax \).

```
Random sketching matrix A
1  -1  0  0  1  -1  0  1
-1   0  1  1  0  0  -1  0
1   1 -1  0 -1 -1  0  1
0  -1 -1 -1  1  1  1  0
```

\[
\begin{pmatrix}
1 \\
0 \\
0 \\
-2 \\
0 \\
0 \\
3 \\
0
\end{pmatrix}
= \begin{pmatrix}
1 \\
-2 \\
1 \\
5
\end{pmatrix}
\]

Useful Property 1: Given \(t \) vectors \(x_1, \ldots, x_t \in \mathbb{Z}^n \), can recover a nonzero entry from each with probability \(\geq 1 - t/n^c \).
Key Ingredient 1: ℓ_0 Sampling

Theorem: There exists a distribution over random matrices $A \in \mathbb{Z}^{O(\log^2 n) \times n}$ such that for any fixed $x \in \mathbb{Z}^n$, with probability at least $1 - 1/n^c$, we can learn (i, x_i) for some $x_i \neq 0$ from Ax.

<table>
<thead>
<tr>
<th>Random sketching matrix A</th>
<th>x</th>
<th>Ax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -1 0 0 1 -1 0 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-1 0 1 1 0 0 -1 0</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>1 1 -1 0 -1 -1 0 1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 -1 -1 -1 1 1 1 0</td>
<td>-2</td>
<td>5</td>
</tr>
</tbody>
</table>

Useful Property 1: Given t vectors $x_1, \ldots, x_t \in \mathbb{Z}^n$, can recover a nonzero entry from each with probability $\geq 1 - t/n^c$.

Useful Property 2: Given sketches Ax_1 and Ax_2, can easily compute $A(x_1 + x_2)$ and recover a nonzero entry from $x_1 + x_2$ with high probability.
Key Ingredient 2: Boruvka’s Algorithm

1. Initialize each node as its own connected component.
2. For each connected component, select an outgoing edge. Merge any newly connected components.
3. Repeat until no connected component has an outgoing edge. If at this point, all nodes are in the same component, then the graph is connected.
1. Initialize each node as its own connected component.
2. For each connected component, select an outgoing edge. Merge any newly connected components.
3. Repeat until no connected component has an outgoing edge. If at this point, all nodes are in the same component, then the graph is connected.
Key Ingredient 2: Boruvka’s Algorithm

1. Initialize each node as its own connected component.
2. For each connected component, select an outgoing edge. Merge any newly connected components.
3. Repeat until no connected component has an outgoing edge. If at this point, all nodes are in the same component, then the graph is connected.
Key Ingredient 2: Boruvka’s Algorithm

1. Initialize each node as its own connected component.
2. For each connected component, select an outgoing edge. Merge any newly connected components.
3. Repeat until no connected component has an outgoing edge. If at this point, all nodes are in the same component, then the graph is connected.
Key Ingredient 2: Boruvka’s Algorithm

1. Initialize each node as its own connected component.
2. For each connected component, select an outgoing edge. Merge any newly connected components.
3. Repeat until no connected component has an outgoing edge. If at this point, all nodes are in the same component, then the graph is connected.
Key Ingredient 2: Boruvka’s Algorithm

1. Initialize each node as its own connected component.
2. For each connected component, select an outgoing edge. Merge any newly connected components.
3. Repeat until no connected component has an outgoing edge. If at this point, all nodes are in the same component, then the graph is connected.
Key Ingredient 2: Boruvka’s Algorithm

1. Initialize each node as its own connected component.
2. For each connected component, select an outgoing edge. Merge any newly connected components.
3. Repeat until no connected component has an outgoing edge. If at this point, all nodes are in the same component, then the graph is connected.

Converges in $\leq \log_2 n$ rounds.
Key Ingredient 3: Neighborhood Sketches

Each node i, can compute a vector $v_i \in \mathbb{Z}^{n \choose 2}$. v_i has a ±1 for every edge in the graph and incident to node i. +1 is used for edges (i,j) and −1 for edges (j,i).

![Diagram of a graph with nodes and vectors](image)

- Given an ℓ_0 sampling matrix $A \in \mathbb{Z}^{O(\log_2 n)}$, each node can compute $A v_i$ and send it to the central server.
- Using these sketches, with probability $1/n$, the central server can identify one edge incident to each node – i.e., they can simulate the first iteration of Boruvka’s algorithm.
Each node i, can compute a vector $v_i \in \mathbb{Z}^\binom{n}{2}$. v_i has a ± 1 for every edge in the graph and incident to node i. +1 is used for edges (i,j) and -1 for edges (j,i).

![Diagram of a graph with nodes and edges labeled with 0s and 1s or -1s in the table to the right of the diagram. The table shows the values for v_5: (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5).]
Key Ingredient 3: Neighborhood Sketches

Each node i, can compute a vector $v_i \in \mathbb{Z}^{\binom{n}{2}}$. v_i has a ± 1 for every edge in the graph and incident to node i. $+1$ is used for edges (i,j) and -1 for edges (j,i).

- Given an ℓ_0 sampling matrix $A \in \mathbb{Z}^{O(\log^2 n) \times \binom{n}{2}}$, each node can compute $Av_i \in \mathbb{Z}^{O(\log^2 n)}$ and send it to the central server.
- Using these sketches, with probability $\geq 1 - 1/n^c$, the central server can identify one edge incident to each node – i.e., they can simulate the first iteration of Boruvka’s algorithm.
Simulating Boruvka’s Algorithm via Sketches

• For independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$, each node computes $A_j v_i$ and sends these sketches to the central server. $O(\log^c n)$ bits in total.
Simulating Boruvka’s Algorithm via Sketches

• For independent \(\ell_0 \) sampling matrices \(A_1, \ldots, A_{\log_2 n} \), each node computes \(A_j v_i \) and sends these sketches to the central server. \(O(\log^c n) \) bits in total.

• The central server uses \(A_1 v_1, \ldots, A_1 v_n \) to simulate the first step of Boruvka’s algorithm.
Simulating Boruvka’s Algorithm via Sketches

- For independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$, each node computes $A_j v_i$ and sends these sketches to the central server. $O(\log^c n)$ bits in total.

- The central server uses $A_1 v_1, \ldots, A_1 v_n$ to simulate the first step of Boruvka’s algorithm.

- For each subsequent step j, let $S_1, S_2, \ldots S_c$ be the current connected components. Observe that $\sum_{i \in S_k} v_i$ has non-zero entries corresponding exactly to the outgoing edges of S_k.
Simulating Boruvka’s Algorithm via Sketches

• For independent \(\ell_0 \) sampling matrices \(A_1, \ldots, A_{\log_2 n} \), each node computes \(A_jv_i \) and sends these sketches to the central server. \(O(\log^c n) \) bits in total.

• The central server uses \(A_1v_1, \ldots, A_1v_n \) to simulate the first step of Boruvka’s algorithm.

• For each subsequent step \(j \), let \(S_1, S_2, \ldots S_c \) be the current connected components. Observe that \(\sum_{i \in S_k} v_i \) has non-zero entries corresponding exactly to the outgoing edges of \(S_k \).

• So, from \(A_j \sum_{i \in S_k} v_i = \sum_{i \in S_k} A_jv_i \), the server can find an outgoing edge from each connected component \(S_k \). Thus, the server can simulate the \(j^{th} \) round of Boruvka’s algorithm.
Simulating Boruvka’s Algorithm via Sketches

- For independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$, each node computes A_jv_i and sends these sketches to the central server. $O(\log^c n)$ bits in total.
- The central server uses A_1v_1, \ldots, A_1v_n to simulate the first step of Boruvka’s algorithm.
- For each subsequent step j, let $S_1, S_2, \ldots S_c$ be the current connected components. Observe that $\sum_{i \in S_k} v_i$ has non-zero entries corresponding exactly to the outgoing edges of S_k.
- So, from $A_j \sum_{i \in S_k} v_i = \sum_{i \in S_k} A_jv_i$, the server can find an outgoing edge from each connected component S_k. Thus, the server can simulate the j^{th} round of Boruvka’s algorithm.
- Overall, using the $\log_2 n$ different sketches from each node, the server can simulate the full algorithm and determine with high probability if the graph is connected or not.
Implementing ℓ_0 Sampling
Theorem: There exists a distribution over random matrices $A \in \mathbb{Z}^{O(\log^2 n) \times n}$ such that for any fixed $x \in \mathbb{Z}^n$, with probability at least $1 - 1/n^c$, we can learn (i, x_i) for some $x_i \neq 0$ from Ax.

Construction:

- Let $S_0, S_1, \ldots, S_{\log_2 n}$ be random subsets of $[n]$. Each element is included in S_j independently with probability $1/2^j$.

- For each S_j, compute $a_j = \sum_{i \in S_j} x_i$, $b_j = \sum_{i \in S_j} x_i \cdot i$ and $c_j = \sum_{i \in S_j} x_i \cdot r^i \mod p$, where r is a random value in $[p]$ and p is a prime with $p \geq n^c$ for some large constant c.

- **Exercise:** Show that the vector $[a_1, \ldots, a_{\log_2 n}, b_1, \ldots, b_{\log_2 n}, c_1, \ldots, c_{\log_2 n}]$ can be written as Ax, where $A \in \mathbb{Z}^{3 \log_2 n \times n}$ is a random matrix.
We will recover a nonzero element from a sampling level when there is exactly one nonzero element at that level.

With good probability, there is will exactly one element at some level. Can improve success probability via repetition.
Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

$a_j = \sum_{i \in S_j} x_i$, $b_j = \sum_{i \in S_j} x_i \cdot i$ and $c_j = \sum_{i \in S_j} x_i \cdot r^i \text{ mod } p$, where r is a random value in $[p]$ and $p = n^c$ for large enough constant c.

Claim 1: If there is a unique $i \in S_j$ with $x_i \neq 0$, then $a_j = x_i$ and $b_j = x_i$. So, from these quantities we can exactly determine $(i; x_j)$.

Claim 2: c_j lets us test if there is a unique such i. In particular, we check that $b_j a_j \equiv [n]$ and that $c_j = a_j^* r^j = a_j \text{ mod } p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $n^p = 1/n^c$.
Recovering Unique Nonzeros

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

$a_j = \sum_{i \in S_j} x_i$, $b_j = \sum_{i \in S_j} x_i \cdot i$ and $c_j = \sum_{i \in S_j} x_i \cdot r^i \mod p$, where r is a random value in $[p]$ and $p = n^c$ for large enough constant c.

Claim 1: If there is a unique $i \in S_j$ with $x_i \neq 0$, then $a_j = x_i$ and $b_j = x_i \cdot i$. So, from these quantities we can exactly determine (i, x_j).
Recovering Unique Nonzeros

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$. $a_j = \sum_{i \in S_j} x_i$, $b_j = \sum_{i \in S_j} x_i \cdot i$ and $c_j = \sum_{i \in S_j} x_i \cdot r^i \mod p$, where r is a random value in $[p]$ and $p = n^c$ for large enough constant c.

Claim 1: If there is a unique $i \in S_j$ with $x_i \neq 0$, then $a_j = x_i$ and $b_j = x_i \cdot i$. So, from these quantities we can exactly determine (i, x_i).

Claim 2: c_j lets us test if there is a unique such i. In particular, we check that $\frac{b_j}{a_j} \in [n]$ and that $c_j = a_j \cdot r^{b_j/a_j} \mod p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} = \frac{1}{n^{c-1}}$.
Recovering Unique Nonzeros

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

\[a_j = \sum_{i \in S_j} x_i, \quad b_j = \sum_{i \in S_j} x_i \cdot i \quad \text{and} \quad c_j = \sum_{i \in S_j} x_i \cdot r^i \mod p, \]
where r is a random value in $[p]$ and $p = n^c$ for large enough constant c.

Claim 1: If there is a unique $i \in S_j$ with $x_i \neq 0$, then $a_j = x_i$ and $b_j = x_i \cdot i$. So, from these quantities we can exactly determine (i, x_i).

Claim 2: c_j lets us test if there is a unique such i. In particular, we check that

\[\frac{b_j}{a_j} \in [n] \quad \text{and} \quad c_j = a_j \cdot r^{b_j/a_j} \mod p. \]

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most \(\frac{n}{p} = \frac{1}{n^{c-1}} \).

The problem of recovering a unique $i \in S_j$ with $x_i \neq 0$ is called 1-sparse recovery.
Claim 2: c_j lets us test if there is a unique such i. In particular, we check that $\frac{b_i}{a_j} \in [n]$ and that $c_j = a_j \cdot r^{b_i/a_j} \mod p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} \leq \frac{1}{n^{c-1}}$.
Recovering Unique Nonzeros

Claim 2: c_j lets us test if there is a unique such i. In particular, we check that $\frac{b_i}{a_j} \in [n]$ and that $c_j = a_j \cdot r^{b_i/a_j} \mod p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} \leq \frac{1}{n^{c-1}}$.

Proof via polynomial identity testing: If $|\{i \in S_j : x_i \neq 0\}| > 1$, then

$$p(r) = c_j - a_j r^{b_i/a_j} \mod p = \sum_{i \in S_j} x_i r^i - a_j r^{b_i/a_j} \mod p$$

is a non-zero polynomial of degree at most n over \mathbb{Z}_p.
Recovering Unique Nonzeros

Claim 2: c_j lets us test if there is a unique such i. In particular, we check that $\frac{b_j}{a_j} \in [n]$ and that $c_j = a_j \cdot r^{b_j/a_j} \mod p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} \leq \frac{1}{n^{c-1}}$.

Proof via polynomial identity testing: If $|\{i \in S_j : x_i \neq 0\}| > 1$, then

$$p(r) = c_j - a_j r^{b_j/a_j} \mod p = \sum_{i \in S_j} x_i r^i - a_j r^{b_j/a_j} \mod p$$

is a non-zero polynomial of degree at most n over \mathbb{Z}_p.

- This polynomial has $\leq n$ roots, so for a random $r \in [p]$, $\Pr[p(r) = 0] \leq \frac{n}{p}$.
- Thus, $c_j = a_j r^{b_j/a_j}$ with probability $\leq \frac{n}{p} \leq \frac{1}{n^{c-1}}$.
Completing The Analysis

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

- If any S_j contains a unique i with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one S_j contains such an i.

```
<table>
<thead>
<tr>
<th>$S_0$</th>
<th>$S_1$</th>
<th>$S_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

...```
Completing The Analysis

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

- If any $S_j$ contains a unique $i$ with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one $S_j$ contains such an $i$.

Claim: For $j$ with $2^{j-2} \leq \|x\|_0 \leq 2^{j-1}$, $\Pr[|\{i \in S_j : x_i \neq 0\}| = 1] \geq 1/8$. 
Completing The Analysis

Recall: \( S_0, \ldots, S_{\log_2 n} \) are random subsets of \([n]\), sampled at rates \(1/2^j\).

- If any \( S_j \) contains a unique \( i \) with \( x_i \neq 0 \), we will recover it.
- It remains to show that with good probability, at least one \( S_j \) contains such an \( i \).

Claim: For \( j \) with \( 2^{j-2} \leq \|x\|_0 \leq 2^{j-1} \), \( \Pr[\{|i \in S_j : x_i \neq 0| = 1\}] \geq 1/8 \).

\[
\Pr[\{|i \in S_j : x_i \neq 0| = 1\}] = \|x\|_0 \cdot \frac{1}{2^j} \cdot \left(1 - \frac{1}{2^j}\right)^{\|x\|_0 - 1}
\]
Completing The Analysis

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

- If any $S_j$ contains a unique $i$ with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one $S_j$ contains such an $i$.

Claim: For $j$ with $2^{j-2} \leq \|x\|_0 \leq 2^{j-1}$, $\Pr[|\{i \in S_j : x_i \neq 0\}| = 1] \geq 1/8$.

$$\Pr[|\{i \in S_j : x_i \neq 0\}| = 1] = \|x\|_0 \cdot \frac{1}{2^j} \cdot \left(1 - \frac{1}{2^j}\right)^{\|x\|_0 - 1}$$

$$\geq \frac{\|x\|_0}{2^j} \left(1 - \frac{\|x\|_0}{2^j}\right)$$
Completing The Analysis

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

- If any $S_j$ contains a unique $i$ with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one $S_j$ contains such an $i$.

Claim: For $j$ with $2^{j-2} \leq \|x\|_0 \leq 2^{j-1}$, $\Pr[\{|i \in S_j : x_i \neq 0\}| = 1] \geq 1/8$.

$$\Pr[\{|i \in S_j : x_i \neq 0\}| = 1] = \|x\|_0 \cdot \frac{1}{2^j} \cdot \left(1 - \frac{1}{2^j}\right)^{\|x\|_0 - 1}$$

$$\geq \frac{\|x\|_0}{2^j} \left(1 - \frac{\|x\|_0}{2^j}\right)$$

$$\geq \frac{1}{4} \cdot \left(1 - \frac{1}{2}\right) = \frac{1}{8}.$$
Completing The Analysis

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

- If any $S_j$ contains a unique $i$ with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one $S_j$ contains such an $i$.

Claim: For $j$ with $2^{j-2} \leq \|x\|_0 \leq 2^{j-1}$, $\Pr[\{|i \in S_j : x_i \neq 0| = 1\} = 1] \geq 1/8$.

\[
\Pr[\{|i \in S_j : x_i \neq 0| = 1\} = 1] = \|x\|_0 \cdot \frac{1}{2^j} \cdot \left(1 - \frac{1}{2^j}\right)^{\|x\|_0 - 1}
\]
\[
\geq \frac{\|x\|_0}{2^j} \left(1 - \frac{\|x\|_0}{2^j}\right)
\]
\[
\geq \frac{1}{4} \cdot \left(1 - \frac{1}{2}\right) = \frac{1}{8}.
\]

If we repeat the whole process $t = O(\log n)$ times, with probability $\geq 1 - 1/n^c$ we will recover some nonzero element of $x$. In total, $A$ is a random matrix with $t \cdot \log_2 n = O(\log^2 n)$ rows.