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Logistics

• Problem Set 1 had its due date postponed until Tuesday
2/15 at 8pm.

• We will still have a weekly quiz this week, also due
Tuesday 2/15 at 8pm.

• Most people think the lectures are ’just right’ or ’a bit too
fast’. I’ll try to slow down a bit. If you feel that you are
really falling behind, let me know.
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Summary

Last Time:
• Concentration bounds – Markov’s and Chebyshev’s inequalities.

• The union bound.

• Quicksort analysis

• Coupon collecting, statistical estimation

• Randomized load balancing and ball-into-bins

Today:
• Stronger concentration bounds for sums of independent
random variables. I.e., exponential concentration bounds.

• Randomized hash function and fingerprints.

• Applications to fast pattern mining and efficient communication
protocols.
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Balls Into Bins

I throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

• Applications to randomized load balancing
• Analysis of hash tables using chaining.
• Direct Proof: For any bin i, Pr[bi ≥ c ln n

ln ln n ] ≤
1

nc−o(1) . Thus,
via union bound, the maximum load is exceeds c ln n

ln ln n with
probability at most 1

nc−1−o(1) .

• Proof using Chebyshev’s inequality gives a weak bound of
O(

√
n) for the maximum load.
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Exponential Concentration Bounds
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Higher Moments

Markov’s Inequality: Pr[X ≥ t] ≤ E[X]
t . First moment.

Chebyshev’s Inequality: Pr[X ≥ t] ≤ E[X2]
t2 . Second moment.

Often (not always!) we can obtain tighter bounds by looking to
higher moments of the random variable.

Moment Generating Function: Consider for any z > 0:

Mz(X) = ez·X =
∞∑
k=0

zkXk
k!

ez·t is non-negative, and monotonic for any z > 0. So can bound via
Markov’s inequality, Pr[X ≥ t] = Pr[Mz(X) ≥ ezt] ≤ E[Mz(X)]

ezt .

By appropriately picking z and bounding E[Mz(X)], we can obtain a
variety of exponential tail bounds. Typically require that X is a sum
of bounded and independent random variables
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The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1} and let X =∑n

i=1 Xi. Let µ = E[X] = E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr (X ≥ (1+ δ)µ) ≤ eδµ
(1+ δ)(1+δ)µ

Chernoff Bound (alternate version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1} and let X =∑n

i=1 Xi. Let µ = E[X] = E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls off exponentially fast.
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Balls Into Bins Via Chernoff Bound

Recall that bi is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

• bi =
∑n

i=1 Ii,j where Ii,j = 1 with probability 1/n and 0
otherwise. Ii,1, . . . Ii,n are independent.

• Apply Chernoff bound with µ = E[bi] = 1:

Pr[bi ≥ k] ≤ ek

(1+ k)(1+k)
.

• For k ≥ c log n
log log n we have:

Pr[bi ≥ k] ≤ e
c log n
log log n(

c log n
log log n

) c log n
log log n

=
1

nc−o(1)

Upshot: We recover the right bound for balls into bins.
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn all falling in [−M,M][-1,1] and let X =

∑n
i=1 Xi. Let

µ = E[X] and σ2 = Var[X] =
∑n

i=1 Var[Xi]. For any t ≥ 0s ≥ 0:

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ sσ
)

≤ 2 exp
(
−s

2

4

)
.

Assume that M = 1 and plug in t = s · σ for s ≤ σ.

Compare to Chebyshev’s: Pr
(∣∣∑n

i=1 Xi − µ
∣∣ ≥ sσ

)
≤ 1

s2 .

• An exponentially stronger dependence on s!
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Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded
random variables lying ≥ s standard deviations from its mean is
≈ exp

(
− s2

4

)
. Can plot this bound for different s:

• Looks like a Gaussian (normal) distribution – can think of
Bernstein’s inequality as giving a quantitative version of the
central limit theorem.

• The distribution of the sum of bounded independent random
variables can be upper bounded with a Gaussian distribution.
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Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

• The Gaussian distribution is so important since many
random variables can be approximated as the sum of a
large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.
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Sampling for Approximation

I have an n× n matrix with entries in [0, 1]. I want to estimate
the sum of entries. I sample s entries uniformly at random
with replacement, take their sum, and multiply it by n2/s. How
large must s be so that this method returns the correct answer,
up to error ±ϵ · n2 with probability at least 1− 1/n?

(a) O(n2) (b) O(n/ϵ) (c) O(logn/ϵ) (d) O(logn/ϵ2)

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn all falling in [−M,M][-1,1] and let X =

∑n
i=1 Xi. Let µ = E[X]

and σ2 = Var[X] =
∑n

i=1 Var[Xi]. For any t ≥ 0:

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.
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Application: Linear Probing
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Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying
buckets until you find an empty one.

Simple and potentially very efficient – but performance can
degrade as the hash table fills up.
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Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and m ≥ 2n buckets,
then linear probing requires O(1) expected time per insertion/query.

Definition: For any interval I ⊂ [n], let L(I) = |{x : h(x) ∈ I}| be the
number of items hashed to the interval. We say I is full if L(I) ≥ |I|.

Which intervals in this table are full? 13



Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an
insertion/query operation for item x. If T(x) > k, there are at least k
full intervals of different lengths containing h(x).

Let Ij = 1 if h(x) lies in some length-j full interval, Ij = 0 otherwise.
Operation time for x is can be bounded as T(x) ≤

∑n
j=1 Ij. 14



Expectation Analysis

Ij = 1 if h(x) lies in some length-j full interval, Ij = 0 otherwise.
Expected operation time for any x is:

E[T(x)] ≤
n∑
j=1

E[Ij].

Observe that h(x) lies in at most 1 length-1 interval, 2 length-2
intervals, etc. So we can upper bound this expectation by:

E[T(x)] ≤
n∑
j=1

j · Pr[any length-j interval is full].

A length-j interval is full if the number of items hashed into it, L(I) is
at least j. Note that when m ≥ 2n, E[L(I)] = j/2. Applying a Chernoff
bound with δ = 1/2, µ = E[L(I)] = j/2:

Pr[L(I) ≥ j] ≤ Pr[|L(I)− µ| ≥ δ · µ]

≤ 2e−
(1/2)2·j/2
2+1/2 = 2e−c·j.
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Finishing the Analysis

Expected operation time for any x is:

E[T(x)] ≤
n∑
j=1

j · Pr[any length-j interval is full]

≤
n∑
j=1

j · 2e−c·j

= O(1).

This matches the expected operation cost of chaining when m ≥ 2n.
In practice, linear probing is typically much faster.
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Random Hashing and Fingerprinting

16



Random Hash Functions

A random hash function maps inputs to random outputs.

h is picked randomly, but after it is picked it is fixed – so a single
input is always mapped to the same output.

import random
a = random.randint(1,100)
b = random.randint(1,100)
def myHash(x):
return (a*x+b) % 100

import random
def myHash(x):
a = random.randint(1,100)
b = random.randint(1,100)
return (a*x+b) % 100
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Fingerprinting

Random hash functions are often used to reduce large files
down to hash ‘fingerprints’, which can be used to check
equality of files (deduplication), detect updates/corruptions,
etc.

• Key requirement is that two distinct files are unlikely to
have the same hash – low collision probability.

• In practice h is often a deterministic ‘cryptographic’ hash
function like SHA or MD5 – hard to analyze formally. 18



Rabin Fingerprint

Rabin Fingerprint: Interpret a bit string x1, x2, . . . , xn as the
binary representation of the integer x =

∑n
i=1 xi · 2i−1. Let

h(x) = x mod p,

where p is a randomly chosen prime in [1, tn log tn].

Prime Number Theorem: There are ≈ tn log tn
log(tn log tn) = Θ(tn)

primes in [1, tn log tn]. So p is chosen randomly from Θ(tn)
possible values.

Claim: For x, y ∈ [0, 2n] with x ̸= y, Pr[h(x) = h(y))] = O(1/t).

• If h(x) = h(y), then it must be that x− y mod p = 0. I.e., p
divides x− y.

• x− y is an integer in the range [−2n, 2n]. What is the
probability that p divides x− y?
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Rabin Fingerprint Analysis

Think-Pair-Share 1: How many unique prime factors can an
integer in [−2n, 2n] have?

Think-Pair-Share 2: What is the probability that a random
prime p chosen from [1, tn log tn] divides x− y ∈ [−2n, 2n]?
Recall: There are Θ(tn) primes in the range [1, tn log tn].
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Application 1: Communication Complexity
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Fingerprinting for Equality Testing

Equality Testing Communication Problem: Alice has some bit
string a ∈ {0, 1}n. Bob has some string b ∈ {0, 1}. How many
bits do they need to communicate to determine if a = b with
probability at least 2/3?
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Fingerprinting for Equality Testing

Equality Testing Protocol:

• Alice picks a random prime p ∈ [1, tn log tn] for some large
constant t.

• Alice sends p, along with the Rabin fingerprint h(a) := a
mod p to Bob. [O(logp) = O(logn) bits]

• Bob uses p to compute h(b) := b mod p.
• If h(a) = h(b), Bob sends ‘YES’ to Alice. Else, he sends ‘No’.
[1 bit]

Correctness: If a = b both Alice and Bob always output ‘YES’. If
a ̸= b they output ‘NO’ with probability 1− O(1/t) ≥ 2/3 if t is
set large enough.

Complexity: Uses just O(logn) bits of communication in total.
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Deterministic Equality Testing

How many bits must Alice and Bob send if they want to check
equality of a,b ∈ {0, 1}n without using randomness?

Claim: Any deterministic protocol for equality testing requires
sending Ω(n) bits.

• An exponential separation between randomized and
deterministic protocols!

• Unlike for running times, for communication complexity
problems there are often large provable separations
between randomized and deterministic protocols.
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Deterministic Equality Testing Lower Bound

Claim: Any deterministic protocol for equality testing requires
sending Ω(n) bits.

• Assume without loss of generality that Alice and Bob alternate
sending 1 bit at a time – at most doubles the number of bits.

• If Alice and Bob send s < n bits, in total, there are 2s possible
conversations they may have.
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Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2s possible
conversations they may have.

• Since there are 2n > 2s possible inputs, there must be two
different inputs v1 ̸= v2, such that given a = b = v1 or a = b = v2,
the protocol outputs ‘YES’ and has identical transcripts.

• But then the players will send the same messages and output
‘YES’ also when Alice is given a = v1 and Bob is given b = v2.
This violates correctness!

25



Application 2: Pattern Matching
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Pattern Matching

Given some document x = x1x2 . . . xn and a pattern
y = y1y2 . . . ym, find some j such that

xjxj+1, . . . , xj+m−1 = y1y2 . . . ym.

Can assume without loss of generality that the strings are
binary strings.

What is the ‘naive’ running time required to solve this problem?
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Rolling Hash

We will use the fact that the Rabin fingerprint is a rolling hash.

• Letting Xj =
∑m−1

i=0 xj+i · 2m−1−i be the integer value
represented by the binary string xjxj+1, . . . , xj+m−1, we have

Xj+1 = 2 · Xj − 2mxj + xj+m.

• Thus, since for any X, h(X) = X mod p,

h(Xj+1) = 2 · h(Xj)− 2mxj + xj+m mod p.

• Given h(Xj), this hash value can be computed using just
O(1) arithmetic operations.
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Rabin-Karp Algorithm

The Rabin-Karp pattern matching algorithm is then:

• Pick a random prime p ∈ [1, ctm logmt], for t = n2.
• Let Y = h(y) be the Rabin fingerprint of the pattern.
• Let H = h(X1) be the Rabin fingerprint of the first block of
text.

• For j = 1, . . . , xn−m+1
• If Y == H, return j.
• Else, H = h(Xj+1) = 2 · h(Xj)− 2mxj + xj+m mod p.

Runtime: We require O(m+ n) time – O(m) for the initial hash
computations, and O(1) for each iteration of the for loop.

Correctness: The probability of a false positive at any step is
upper bounded by 1

t =
1
t2 , so via a union bound, the probably

of a false positive overall is at most n
t2 =

1
n .
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Questions?
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