
COMPSCI 690RA: Randomized Algorithms and
Probabilistic Data Analysis

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2022.
Lecture 3

1

Logistics

• Problem Set 1 had its due date postponed until Tuesday
2/15 at 8pm.

• We will still have a weekly quiz this week, also due
Tuesday 2/15 at 8pm.

• Most people think the lectures are ’just right’ or ’a bit too
fast’. I’ll try to slow down a bit. If you feel that you are
really falling behind, let me know.

2

Summary

Last Time:
• Concentration bounds – Markov’s and Chebyshev’s inequalities.

• The union bound.

• Quicksort analysis

• Coupon collecting, statistical estimation

• Randomized load balancing and ball-into-bins

Today:
• Stronger concentration bounds for sums of independent
random variables. I.e., exponential concentration bounds.

• Randomized hash function and fingerprints.

• Applications to fast pattern mining and efficient communication
protocols.

3

Balls Into Bins

I throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

• Applications to randomized load balancing
• Analysis of hash tables using chaining.
• Direct Proof: For any bin i, Pr[bi ≥ c ln n

ln ln n] ≤
1

nc−o(1) . Thus,
via union bound, the maximum load is exceeds c ln n

ln ln n with
probability at most 1

nc−1−o(1) .

• Proof using Chebyshev’s inequality gives a weak bound of
O(

√
n) for the maximum load.

4

Exponential Concentration Bounds

4

Higher Moments

Markov’s Inequality: Pr[X ≥ t] ≤ E[X]
t . First moment.

Chebyshev’s Inequality: Pr[X ≥ t] ≤ E[X2]
t2 . Second moment.

Often (not always!) we can obtain tighter bounds by looking to
higher moments of the random variable.

Moment Generating Function: Consider for any z > 0:

Mz(X) = ez·X =
∞∑
k=0

zkXk
k!

ez·t is non-negative, and monotonic for any z > 0. So can bound via
Markov’s inequality, Pr[X ≥ t] = Pr[Mz(X) ≥ ezt] ≤ E[Mz(X)]

ezt .

By appropriately picking z and bounding E[Mz(X)], we can obtain a
variety of exponential tail bounds. Typically require that X is a sum
of bounded and independent random variables

5

The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1} and let X =∑n

i=1 Xi. Let µ = E[X] = E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr (X ≥ (1+ δ)µ) ≤ eδµ
(1+ δ)(1+δ)µ

Chernoff Bound (alternate version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1} and let X =∑n

i=1 Xi. Let µ = E[X] = E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls off exponentially fast.
6

Balls Into Bins Via Chernoff Bound

Recall that bi is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

• bi =
∑n

i=1 Ii,j where Ii,j = 1 with probability 1/n and 0
otherwise. Ii,1, . . . Ii,n are independent.

• Apply Chernoff bound with µ = E[bi] = 1:

Pr[bi ≥ k] ≤ ek

(1+ k)(1+k)
.

• For k ≥ c log n
log log n we have:

Pr[bi ≥ k] ≤ e
c log n
log log n(

c log n
log log n

) c log n
log log n

=
1

nc−o(1)

Upshot: We recover the right bound for balls into bins.
7

Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn all falling in [−M,M][-1,1] and let X =

∑n
i=1 Xi. Let

µ = E[X] and σ2 = Var[X] =
∑n

i=1 Var[Xi]. For any t ≥ 0s ≥ 0:

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ sσ
)

≤ 2 exp
(
−s

2

4

)
.

Assume that M = 1 and plug in t = s · σ for s ≤ σ.

Compare to Chebyshev’s: Pr
(∣∣∑n

i=1 Xi − µ
∣∣ ≥ sσ

)
≤ 1

s2 .

• An exponentially stronger dependence on s!
8

Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded
random variables lying ≥ s standard deviations from its mean is
≈ exp

(
− s2

4

)
. Can plot this bound for different s:

• Looks like a Gaussian (normal) distribution – can think of
Bernstein’s inequality as giving a quantitative version of the
central limit theorem.

• The distribution of the sum of bounded independent random
variables can be upper bounded with a Gaussian distribution.

9

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

• The Gaussian distribution is so important since many
random variables can be approximated as the sum of a
large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.

10

Sampling for Approximation

I have an n× n matrix with entries in [0, 1]. I want to estimate
the sum of entries. I sample s entries uniformly at random
with replacement, take their sum, and multiply it by n2/s. How
large must s be so that this method returns the correct answer,
up to error ±ϵ · n2 with probability at least 1− 1/n?

(a) O(n2) (b) O(n/ϵ) (c) O(logn/ϵ) (d) O(logn/ϵ2)

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn all falling in [−M,M][-1,1] and let X =

∑n
i=1 Xi. Let µ = E[X]

and σ2 = Var[X] =
∑n

i=1 Var[Xi]. For any t ≥ 0:

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.

11

Application: Linear Probing

11

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying
buckets until you find an empty one.

Simple and potentially very efficient – but performance can
degrade as the hash table fills up.

12

Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and m ≥ 2n buckets,
then linear probing requires O(1) expected time per insertion/query.

Definition: For any interval I ⊂ [n], let L(I) = |{x : h(x) ∈ I}| be the
number of items hashed to the interval. We say I is full if L(I) ≥ |I|.

Which intervals in this table are full? 13

Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an
insertion/query operation for item x. If T(x) > k, there are at least k
full intervals of different lengths containing h(x).

Let Ij = 1 if h(x) lies in some length-j full interval, Ij = 0 otherwise.
Operation time for x is can be bounded as T(x) ≤

∑n
j=1 Ij. 14

Expectation Analysis

Ij = 1 if h(x) lies in some length-j full interval, Ij = 0 otherwise.
Expected operation time for any x is:

E[T(x)] ≤
n∑
j=1

E[Ij].

Observe that h(x) lies in at most 1 length-1 interval, 2 length-2
intervals, etc. So we can upper bound this expectation by:

E[T(x)] ≤
n∑
j=1

j · Pr[any length-j interval is full].

A length-j interval is full if the number of items hashed into it, L(I) is
at least j. Note that when m ≥ 2n, E[L(I)] = j/2. Applying a Chernoff
bound with δ = 1/2, µ = E[L(I)] = j/2:

Pr[L(I) ≥ j] ≤ Pr[|L(I)− µ| ≥ δ · µ]

≤ 2e−
(1/2)2·j/2
2+1/2 = 2e−c·j.

15

Finishing the Analysis

Expected operation time for any x is:

E[T(x)] ≤
n∑
j=1

j · Pr[any length-j interval is full]

≤
n∑
j=1

j · 2e−c·j

= O(1).

This matches the expected operation cost of chaining when m ≥ 2n.
In practice, linear probing is typically much faster.

16

Random Hashing and Fingerprinting

16

Random Hash Functions

A random hash function maps inputs to random outputs.

h is picked randomly, but after it is picked it is fixed – so a single
input is always mapped to the same output.

import random
a = random.randint(1,100)
b = random.randint(1,100)
def myHash(x):
return (a*x+b) % 100

import random
def myHash(x):
a = random.randint(1,100)
b = random.randint(1,100)
return (a*x+b) % 100

17

Fingerprinting

Random hash functions are often used to reduce large files
down to hash ‘fingerprints’, which can be used to check
equality of files (deduplication), detect updates/corruptions,
etc.

• Key requirement is that two distinct files are unlikely to
have the same hash – low collision probability.

• In practice h is often a deterministic ‘cryptographic’ hash
function like SHA or MD5 – hard to analyze formally. 18

Rabin Fingerprint

Rabin Fingerprint: Interpret a bit string x1, x2, . . . , xn as the
binary representation of the integer x =

∑n
i=1 xi · 2i−1. Let

h(x) = x mod p,

where p is a randomly chosen prime in [1, tn log tn].

Prime Number Theorem: There are ≈ tn log tn
log(tn log tn) = Θ(tn)

primes in [1, tn log tn]. So p is chosen randomly from Θ(tn)
possible values.

Claim: For x, y ∈ [0, 2n] with x ̸= y, Pr[h(x) = h(y))] = O(1/t).

• If h(x) = h(y), then it must be that x− y mod p = 0. I.e., p
divides x− y.

• x− y is an integer in the range [−2n, 2n]. What is the
probability that p divides x− y?

19

Rabin Fingerprint Analysis

Think-Pair-Share 1: How many unique prime factors can an
integer in [−2n, 2n] have?

Think-Pair-Share 2: What is the probability that a random
prime p chosen from [1, tn log tn] divides x− y ∈ [−2n, 2n]?
Recall: There are Θ(tn) primes in the range [1, tn log tn].

20

Application 1: Communication Complexity

20

Fingerprinting for Equality Testing

Equality Testing Communication Problem: Alice has some bit
string a ∈ {0, 1}n. Bob has some string b ∈ {0, 1}. How many
bits do they need to communicate to determine if a = b with
probability at least 2/3?

21

Fingerprinting for Equality Testing

Equality Testing Protocol:

• Alice picks a random prime p ∈ [1, tn log tn] for some large
constant t.

• Alice sends p, along with the Rabin fingerprint h(a) := a
mod p to Bob. [O(logp) = O(logn) bits]

• Bob uses p to compute h(b) := b mod p.
• If h(a) = h(b), Bob sends ‘YES’ to Alice. Else, he sends ‘No’.
[1 bit]

Correctness: If a = b both Alice and Bob always output ‘YES’. If
a ̸= b they output ‘NO’ with probability 1− O(1/t) ≥ 2/3 if t is
set large enough.

Complexity: Uses just O(logn) bits of communication in total.

22

Deterministic Equality Testing

How many bits must Alice and Bob send if they want to check
equality of a,b ∈ {0, 1}n without using randomness?

Claim: Any deterministic protocol for equality testing requires
sending Ω(n) bits.

• An exponential separation between randomized and
deterministic protocols!

• Unlike for running times, for communication complexity
problems there are often large provable separations
between randomized and deterministic protocols.

23

Deterministic Equality Testing Lower Bound

Claim: Any deterministic protocol for equality testing requires
sending Ω(n) bits.

• Assume without loss of generality that Alice and Bob alternate
sending 1 bit at a time – at most doubles the number of bits.

• If Alice and Bob send s < n bits, in total, there are 2s possible
conversations they may have.

24

Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2s possible
conversations they may have.

• Since there are 2n > 2s possible inputs, there must be two
different inputs v1 ̸= v2, such that given a = b = v1 or a = b = v2,
the protocol outputs ‘YES’ and has identical transcripts.

• But then the players will send the same messages and output
‘YES’ also when Alice is given a = v1 and Bob is given b = v2.
This violates correctness!

25

Application 2: Pattern Matching

25

Pattern Matching

Given some document x = x1x2 . . . xn and a pattern
y = y1y2 . . . ym, find some j such that

xjxj+1, . . . , xj+m−1 = y1y2 . . . ym.

Can assume without loss of generality that the strings are
binary strings.

What is the ‘naive’ running time required to solve this problem?

26

Rolling Hash

We will use the fact that the Rabin fingerprint is a rolling hash.

• Letting Xj =
∑m−1

i=0 xj+i · 2m−1−i be the integer value
represented by the binary string xjxj+1, . . . , xj+m−1, we have

Xj+1 = 2 · Xj − 2mxj + xj+m.

• Thus, since for any X, h(X) = X mod p,

h(Xj+1) = 2 · h(Xj)− 2mxj + xj+m mod p.

• Given h(Xj), this hash value can be computed using just
O(1) arithmetic operations.

27

Rabin-Karp Algorithm

The Rabin-Karp pattern matching algorithm is then:

• Pick a random prime p ∈ [1, ctm logmt], for t = n2.
• Let Y = h(y) be the Rabin fingerprint of the pattern.
• Let H = h(X1) be the Rabin fingerprint of the first block of
text.

• For j = 1, . . . , xn−m+1
• If Y == H, return j.
• Else, H = h(Xj+1) = 2 · h(Xj)− 2mxj + xj+m mod p.

Runtime: We require O(m+ n) time – O(m) for the initial hash
computations, and O(1) for each iteration of the for loop.

Correctness: The probability of a false positive at any step is
upper bounded by 1

t =
1
t2 , so via a union bound, the probably

of a false positive overall is at most n
t2 =

1
n .

28

Questions?

29

