COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2022. Lecture 2

Logistics

- Reminder that there is a weekly quiz, released after class on Wednesday and due the next Tuesday 8pm.
- Problem Set 1 was released Monday. Due next Friday 2/11.
 Download from the course website.
- · See Piazza for a post to organize homework groups.
- Reminder that we encourage you to post your questions publicly on Piazza – you will receive extra credit for this.
 And help your classmates!

Talk This Week

Thursday at 4pm Talya Eden (BU, MIT) will be giving a Zoom talk on Sublinear-Time Graph Algorithms: Motif Counting and Uniform Sampling.

- This is a very cool line of work that heavily uses randomization.
- · Link on CICS Events page.

https://umass-amherst.zoom.us/j/94725490374? pwd=bGtsa0hjNGx5c1VyNnlGT21WbU5wQT09

Summary

Last Time:

AB ? C

- Motivation behind randomized algorithms and some classic examples — polynomial identity testing, Freivald's algorithm.
- Complexity classes related to randomized algorithms $P \subseteq ZPP \subseteq RP \subseteq BPP$.
- Probability review linearity of expectation and variance.

Summary

Last Time:

- Motivation behind randomized algorithms and some classic examples — polynomial identity testing, Freivald's algorithm.
- Complexity classes related to randomized algorithms $P \subseteq ZPP \subseteq RP \subseteq BPP$
- $P \subseteq ZPP \subseteq RP \subseteq BPP$.

 Probability review $\frac{1}{1}$ linearity of expectation and variance.

Today:

- Concentation bounds Markov's and Chebyshev's inequalities.
- · The union bound.
- · Exponential concentration bounds Chernoff and Bernstein
- Applications of tools to Quicksort analysis, coupon collecting, statistical estimation, random hashing.

Application 1: Quicksort with Random Pivots

Quicksort(X): where $X = (x_1, \dots, x_n)$ is a list of numbers.

- 1. If X is empty: return X.
- 2. Else: select pivot p uniformly at random from $\{1, \ldots, n\}$.
- 3. Let $X_{lo} = \{i \in X : x_i < x_p\}$ and $X_{hi} = \{i \in X : x_i \ge x_p\}$ (requires n-1 comparisons with x_p to determine).
- 4. Return the concatenation of the lists [Quicksort(X_{lo}), (X_p), Quicksort(X_{hi})].

Quicksort(X): where $X = (x_1, ..., x_n)$ is a list of numbers.

- 1. If X is empty: return X.
- 2. Else: select pivot p uniformly at random from $\{1, \ldots, n\}$.
- 3. Let $X_{lo} = \{i \in X : x_i < x_p\}$ and $X_{hi} = \{i \in X : x_i \ge x_p\}$ (requires n-1 comparisons with x_p to determine).
- 4. Return the concatenation of the lists [Quicksort(X_{lo}), (X_p), Quicksort(X_{hi})].

Quicksort(X): where $X = (x_1, \dots, x_n)$ is a list of numbers.

- 1. If X is empty: return X.
- ⁷ 2. Else: select pivot p uniformly at random from $\{1, \ldots, n\}$.
- 3. Let $X_{lo} = \{i \in X : x_i < x_p\}$ and $X_{hi} = \{i \in X : x_i \ge x_p\}$ (requires n-1 comparisons with x_p to determine).
- 4. Return the concatenation of the lists [Quicksort(X_{lo}), (x_p), Quicksort(X_{hi})].

Quicksort(X): where $X = (x_1, ..., x_n)$ is a list of numbers.

- 1. If X is empty: return X.
- 2. Else: select pivot p uniformly at random from $\{1, \ldots, n\}$.
- 3. Let $X_{lo} = \{i \in X : x_i < x_p\}$ and $X_{hi} = \{i \in X : x_i \ge x_p\}$ (requires n-1 comparisons with x_p to determine).
 - 4. Return the concatenation of the lists [Quicksort(X_{lo}), (x_p), Quicksort(X_{hi})].

Quicksort(X): where $X = (x_1, ..., x_n)$ is a list of numbers.

- 1. If X is empty: return X.
- 2. Else: select $\underline{pivot p}$ uniformly at random from $\{1, \dots, n\}$.
- 3. Let $X_{lo} = \{i \in X : x_i < x_p\}$ and $X_{hi} = \{i \in X : x_i \ge x_p\}$ (requires n-1 comparisons with x_p to determine).
- 4. Return the concatenation of the lists [Quicksort(X_{lo}), (x_p), Quicksort(X_{hi})].

Quicksort(X): where $X = (x_1, ..., x_n)$ is a list of numbers.

- 1. If X is empty: return X.
- 2. Else: select pivot p uniformly at random from $\{1, \ldots, n\}$.
- 3. Let $X_{lo} = \{i \in X : x_i < x_p\}$ and $X_{hi} = \{i \in X : x_i \ge x_p\}$ (requires n-1 comparisons with x_p to determine).
 - 4. Return the concatenation of the lists [Quicksort(X_{lo}), (x_p), Quicksort(X_{hi})].

What is the worst case running time of this algorithm?

Theorem: Let T be the number of comparisions performed by Quicksort(X). Then $\mathbb{E}[T] = O(n \log n)$.

• For any $i, j \in [n]$ with i < j, let $I_{ij} = 1$ if x_i, x_j are compared at some point during the algorithm, and $I_{ij} = 0$ if they are not. An indicator random variable.

- For any $i, j \in [n]$ with i < j, let $I_{ij} = 1$ if x_i, x_j are compared at some point during the algorithm, and $I_{ij} = 0$ if they are not. An indicator random variable.
- We can write $T = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} I_{ij}$.

- For any $i, j \in [n]$ with i < j, let $I_{ij} = 1$ if x_i, x_j are compared at some point during the algorithm, and $I_{ij} = 0$ if they are not. An indicator random variable.
- We can write $T = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} I_{ij}$. Thus, via linearity of expectation

$$\mathbb{E}[\mathsf{T}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[\mathsf{I}_{ij}]$$

- For any $i, j \in [n]$ with i < j, let $\underline{\mathbf{I}_{ij}} = \underline{\mathbf{1}}$ if $\underline{x_i}, \underline{x_j}$ are compared at some point during the algorithm, and $\underline{\mathbf{I}_{ij}} = 0$ if they are not. An indicator random variable.
- We can write $T = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} I_{ij}$. Thus, via linearity of expectation

$$\mathbb{E}[T] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[I_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[x_i, x_j \text{ are compared}]$$

Theorem: Let T be the number of comparisions performed by Quicksort(X). Then $\mathbb{E}[T] = O(n \log n)$.

- For any $i, j \in [n]$ with i < j, let $I_{ij} = 1$ if x_i, x_j are compared at some point during the algorithm, and $I_{ij} = 0$ if they are not. An indicator random variable.
- We can write $T = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} I_{ij}$. Thus, via linearity of expectation

$$\mathbb{E}[T] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[I_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[x_i, x_j \text{ are compared}]$$

So we need to upper bound $Pr[x_i, x_j \text{ are compared}].$

Upper bounding $Pr[x_i, x_j \text{ are compared}]$:

Upper bounding $Pr[x_i, x_j \text{ are compared}]$:

(Xz X, Xy X3)

• Assume without loss of generality that $x_1 \le x_2 \le ... \le x_n$. This is just 'renaming' the elements of our list. Also recall that i < j.

Upper bounding $Pr[x_i, x_j \text{ are compared}]$:

- Assume without loss of generality that $x_1 \le x_2 \le ... \le x_n$. This is just 'renaming' the elements of our list. Also recall that i < j.
- At exactly one step of the recursion, x_i, x_j will be 'split up' with one landing in X_{hi} and the other landing in X_{lo} , or one being chosen as the pivot. x_i, x_j are only ever compared in this later case if one is chosen as the pivot when they are split up.

Upper bounding $Pr[x_i, x_j \text{ are compared}]$:

- Assume without loss of generality that $x_1 \le x_2 \le ... \le x_n$. This is just 'renaming' the elements of our list. Also recall that i < j.
- At exactly one step of the recursion, x_i, x_j will be 'split up' with one landing in X_{hi} and the other landing in X_{lo} , or one being chosen as the pivot. x_i, x_j are only ever compared in this later case if one is chosen as the pivot when they are split up.
- The split occurs when some element between x_i and x_j is chosen as the pivot. The possible elements are x_i, x_{i+1}, \dots, x_j .

Upper bounding $Pr[x_i, x_j \text{ are compared}]$:

- Assume without loss of generality that $x_1 \le x_2 \le ... \le x_n$. This is just 'renaming' the elements of our list. Also recall that i < j.
- At exactly one step of the recursion, x_i, x_j will be 'split up' with one landing in X_{hi} and the other landing in X_{lo} , or one being chosen as the pivot. x_i, x_j are only ever compared in this later case if one is chosen as the pivot when they are split up.
- The split occurs when some element between x_i and x_j is chosen as the pivot. The possible elements are x_i, x_{i+1}, \dots, x_i .

• Pr[x_i, x_j are compared] is equal to the probability that either x_i or x_j are chosen as the splitting pivot from this list. Thus, $\Pr[x_i, x_j \text{ are compared}] = \frac{2}{|x_i - x_j|}$

So Far: Expected number of comparisons is given as:

$$\mathbb{E}[T] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[x_i, x_j \text{ are compared}].$$

And we computed $Pr[x_i, x_j \text{ are compared}] = \frac{2}{j-i+1}$.

So Far: Expected number of comparisons is given as:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[x_i, x_j \text{ are compared}].$$

And we computed $Pr[x_i, x_j \text{ are compared}] = \frac{2}{j-i+1}$. Plugging in:

$$\mathbb{E}[T] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

So Far: Expected number of comparisons is given as:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[x_i, x_j \text{ are compared}].$$

And we computed $Pr[x_i, x_j \text{ are compared}] = \frac{2}{j-i+1}$. Plugging in:

$$\mathbb{E}[T] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} \frac{1}{1} \frac{2}{2} + \frac{7}{3} + \frac{7}{4} + \dots + \frac{2^{n}}{n-i+1}$$

$$2 + 3 + \dots + n - 1 + 1$$

So Far: Expected number of comparisons is given as:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[\mathsf{x}_i, \mathsf{x}_j \text{ are compared}].$$

And we computed $Pr[x_i, x_j \text{ are compared}] = \frac{2}{j-i+1}$. Plugging in:

$$\mathbb{E}[T] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-1} \frac{2}{k}$$

$$\leq \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \leq 2 \cdot (n-1) \cdot \sum_{k=1}^{n} \frac{1}{k}$$

So Far: Expected number of comparisons is given as:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} \Pr[x_i, x_j \text{ are compared}].$$

And we computed $Pr[x_i, x_i \text{ are compared}] = \frac{2}{i-i+1}$. Plugging in:

$$\mathbb{E}[T] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\leq \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \leq 2 \cdot (n-1) \cdot \sum_{k=1}^{n} \frac{1}{k} = 2n \cdot H_n = O(n \log n).$$
The compaison based sold

Concentration Inequalities

Concentration Inequalities

Concentration inequalities are bounds showing that a random variable lies close to it's expectation with good probability. Key tools in the analysis of randomized algorithms.

The most fundamental concentration bound: Markov's inequality.

The most fundamental concentration bound: Markov's inequality.

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

The most fundamental concentration bound: **Markov's** inequality.

For any non-negative random variable X and any t > 0:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

Proof:

$$\mathbb{E}[X] = \sum_{\mathbf{y}} \Pr(X = u) \cdot u$$

The most fundamental concentration bound: **Markov's** inequality.

Proof:
$$\mathbb{E}[X] = \sum_{s} \Pr(X = u) \underbrace{u}_{t} \ge \sum_{u \ge t} \Pr(X = u) \cdot u$$

The most fundamental concentration bound: Markov's inequality.

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

$$\mathbb{E}[X] = \sum_{s} \Pr(X = u) \cdot u \ge \sum_{u \ge t} \Pr(X = u) \cdot u$$

$$\ge \sum_{u \ge t} \Pr(X = u) \cdot t$$

The most fundamental concentration bound: **Markov's** inequality.

Proof:
$$\mathbb{E}[X] = \sum_{s} \Pr(X = u) \cdot u \ge \sum_{u \ge t} \Pr(X = u) \cdot u$$

$$\ge \sum_{u \ge t} \Pr(X = u) \cdot t$$

$$= t \cdot \Pr(X \ge t).$$

$$= t \cdot \Pr(X \ge t).$$

Markov's Inequality

The most fundamental concentration bound: **Markov's** inequality.

For any non-negative random variable X and any t > 0:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

Proof:

$$\mathbb{E}[X] = \sum_{s} \Pr(X = u) \cdot u \ge \sum_{u \ge t} \Pr(X = u) \cdot u$$
$$\ge \sum_{u \ge t} \Pr(X = u) \cdot t$$
$$= t \cdot \Pr(X > t).$$

Plugging in $t = \mathbb{E}[X] \cdot s$, $\Pr[X \ge s \cdot \mathbb{E}[X]] \le 1/s$. The larger the deviation s, the smaller the probability.

Markov's Inequality

 $7PP \leq BPP$ AWYS ightharpoonup in expected running time T. Show how

to turn this into a Monte-Carlo algorithm with worst case

running time 3T and success probability 2/3.

(run also 3 there is 5tops each the

T+1

opto

run also. once for n 3T steps. If toring

otpot answer else at FAIL

Pr(correct) = Pr(rutive < 3 T) = 21/3

Pr(runtive) > 3T) < E(rutive) < 3

11

With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable X and any value t > 0:

$$\Pr(|X| \ge t) = \Pr(X^2 \ge t^2).$$

$$\le \frac{1}{2} \qquad \text{where}$$

With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable X and any value t > 0:

$$\Pr(|\mathbf{X}| \ge t) = \Pr(\mathbf{X}^2 \ge t^2).$$

X² is a nonnegative random variable. So can apply Markov's:

With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable X and any value t > 0:

$$\Pr(|\mathbf{X}| \ge t) = \Pr(\mathbf{X}^2 \ge t^2).$$

X² is a nonnegative random variable. So can apply Markov's:

$$\underbrace{\Pr(|\mathbf{X}| \geq t)} = \Pr(\mathbf{X}^2 \geq t^2) \leq \underbrace{\frac{\mathbb{E}[\mathbf{X}^2]}{t^2}}.$$

With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable X and any value t > 0:

$$\Pr(|\mathbf{X}| \ge t) = \Pr(\mathbf{X}^2 \ge t^2).$$

X² is a nonnegative random variable. So can apply Markov's:

$$Pr(|\mathbf{X}| \ge t) = Pr(\mathbf{X}^2 \ge t^2) \le \frac{\mathbb{E}[\mathbf{X}^2]}{t^2}.$$

Plugging in the random variable $X - \mathbb{E}[X]$, gives the standard form of Chebyshev's inequality:

$$\Pr(|X - \mathbb{E}[X]| \ge t) \le \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2} = \frac{\text{Var}(X)}{t^2}.$$

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge t) \le \frac{\operatorname{Var}[\mathbf{X}]}{t^2}$$

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge t) \le \frac{\operatorname{Var}[\mathbf{X}]}{t^2}$$

What is the probability that **X** falls s standard deviations from it's mean?

$$\Pr(|\underline{X - \mathbb{E}[X]}| \ge \underbrace{s \cdot \sqrt{\text{Var}[X]}}) \le \frac{\text{Var}[X]}{s^2 \cdot \text{Var}[X]} = \frac{1}{s^2}.$$

Application 2: Statistical Estimation + Law of

Large Numbers

Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ be their sample average.

For any $\epsilon > 0$, $\Pr[|\overline{X} - \mu| \ge \epsilon \sigma] \le \frac{1}{n\epsilon^2}$.

Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ be their sample average.

For any
$$\epsilon > 0$$
, $\Pr[|\overline{\mathbf{X}} - \mu| \ge \epsilon \sigma] \le \frac{1}{n\epsilon^2}$.

- By linearity of expectation $\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \mu$. By linearity of variance, $\mathbb{E}[X] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i] = \frac{\sigma^2}{n}$. $\frac{1}{5^2}$. 6^2 n

Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ be their sample average.

For any $\epsilon > 0$, $\Pr[|\overline{X} - \mu| \ge \epsilon \sigma] \le \frac{1}{n\epsilon^2}$.

- By linearity of expectation, $\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \mu$.
- By linearity of variance, $\mathbb{E}[\overline{X}] = \frac{1}{n^2} \sum_{i=1}^n \text{Var}[X_i] = \frac{\sigma^2}{n}$.

• Plugging into Chebyshev's inequality:
$$\Pr[|\overline{\overline{X}} - \mu| \ge \epsilon \sigma] \le \frac{\text{Var}[\overline{X}]}{\epsilon^2 \sigma^2} = \frac{1}{n\epsilon^2}.$$

Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ be their sample average.

For any
$$\epsilon \geq 0$$
, $\Pr[|\overline{X} - \mu| \geq \epsilon \sigma] \leq \frac{1}{n\epsilon^2}$.

- By linearity of expectation, $\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \mu$.
- By linearity of variance, $\mathbb{E}[\overline{X}] = \frac{1}{n^2} \sum_{i=1}^n \text{Var}[X_i] = \frac{\sigma^2}{n}$.
- · Plugging into Chebyshev's inequality:

$$\bigcap = \frac{1}{\varepsilon^2 \delta} \qquad \Pr[|\overline{X} - \mu| \ge \epsilon \sigma] \le \frac{\text{Var}[\overline{X}]}{\epsilon^2 \sigma^2} = \frac{1}{n\epsilon^2}.$$

$$\operatorname{Pr}(|\overline{X} \cdot \mu| > \epsilon \delta) \le \frac{1}{n\epsilon^2} = \underbrace{\delta}$$

This is the weak law of large numbers.

Application to statistical estimation: There is a large population of individuals. A p fraction of them have a certain property (e.g., 55% of people support decreased taxation, 10% of people are greater than 6' tall, etc.). Want to estimate p from a small sample of individuals.

Sample \underline{n} individuals uniformly at random, with replacement. Let $X_i = 1$ if the i^{th} individual has the property, and 0 otherwise. X_1, \ldots, X_n are i.i.d. draws from Bern(p) – each is 1 with probability p and 0 with probability 1 - p.

- · Sample *n* individuals uniformly at random, with replacement.
- Let $X_i = 1$ if the i^{th} individual has the property, and 0 otherwise. X_1, \ldots, X_n are i.i.d. draws from Bern(p) each is 1 with probability p and 0 with probability 1 p.
- $\mathbb{E}[X_i] = p$ and $Var[X_i] = p(1-p). \leq P$
- Thus, letting $\overline{\bar{p}} = \frac{1}{n} \sum_{i=1}^{n} \overline{X_i}$, $\mathbb{E}[\bar{p}] = p$ and $\text{Var}[\bar{p}] = \frac{p(1-p)}{n} \leq \frac{p}{n}$.

- · Sample *n* individuals uniformly at random, with replacement.
- Let $X_i = 1$ if the i^{th} individual has the property, and 0 otherwise. X_1, \ldots, X_n are i.i.d. draws from Bern(p) each is 1 with probability p and 0 with probability 1 p.
- $\mathbb{E}[X_i] = p$ and $Var[X_i] = p(1-p)$.
- Thus, letting $\bar{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $\mathbb{E}[\bar{p}] = p$ and $\text{Var}[\bar{p}] = \frac{p(1-p)}{n} \leq \frac{p}{n}$.
- By Chebyshev's inequality $\Pr[|p \bar{p}| \ge \epsilon] \le \frac{p}{\epsilon^2 n}$.

Application to statistical estimation: There is a large population of individuals. A *p* fraction of them have a certain property (e.g., 55% of people support decreased taxation, 10% of people are greater than 6' tall, etc.). Want to estimate *p* from a small sample of individuals.

- · Sample *n* individuals uniformly at random, with replacement.
- Let $X_i = 1$ if the i^{th} individual has the property, and 0 otherwise. X_1, \ldots, X_n are i.i.d. draws from Bern(p) each is 1 with probability p and 0 with probability 1 p.
- $\mathbb{E}[X_i] = p$ and $Var[X_i] = p(1-p)$.
- Thus, letting $\bar{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $\mathbb{E}[\bar{p}] = p$ and $\text{Var}[\bar{p}] = \frac{p(1-p)}{n} \leq \frac{p}{n}$.
- By Chebyshev's inequality $\Pr[|p-\bar{p}| \geq \epsilon] \leq \frac{p}{\epsilon^2 n} \mathbb{Z}$

Upshot: If we take $\underline{n} = \frac{p}{\epsilon^2 \delta}$ samples, then with probability at least $1 - \delta$, \bar{p} will be a $\pm \epsilon$ estimate to the true proportion p. A prototypical sublinear time algorithm.

Application to Success Boosting

decision problem Think-Pair-Share: You have a Monte-Carlo algorithm with

worst case running time <u>T</u> and success probability 2/3. Show how to obtain, for any $\delta \in (0,1)$, a Monte-Carlo algorithm with worse case running time $O(T/\delta)$ and success probability $1 - \delta$.

Worse case running time
$$0(7/8)$$
 and success probability $1-8$.

X; = 10 if correct Toldo $0 = 01$ also $0 = 0$ fine

 $0 = 0$ if involved repeat also $0 = 0$ fine

 $0 = 0$ if involved $0 = 0$ also $0 = 0$ fine

 $0 = 0$ involved $0 = 0$ also $0 = 0$ fine

 $0 = 0$ involved $0 = 0$ also $0 = 0$ fine

 $0 = 0$ involved $0 = 0$ also $0 = 0$ fine

 $0 = 0$ involved $0 = 0$ also $0 = 0$ fine

 $0 = 0$ involved $0 = 0$ involved $0 = 0$ involved $0 = 0$ fine

 $0 = 0$ involved $0 = 0$ invo

 $\frac{\mathbb{E}\left[ZX_{i}\right]}{\mathbb{E}\left[ZX_{i}\right]} = Z \mathbb{E}X_{i} = \frac{2}{3} \cdot n$ $V_{i} \left(\frac{ZX_{i}}{ZX_{i}}\right) = \frac{2}{3} \cdot n$

Application 3: Coupon Collecting

There is a set of *n* unique coupons. At each step you draw a random coupon from this set. How many steps does it take you to collect all the coupons?

Think-Pair-Share: Say you have collected i coupons so far. Let T_{i+1} denote the number of draws needed to collect the $(i+1)^{st}$ \mathcal{N}

coupon. What is $\mathbb{E}[T_i]$? = $\frac{C}{C^{-1}}$

prob relect "how"

1

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. I.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. I.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is:

$$\mathbb{E}[T] = \sum_{i=0}^{n-1} \mathbb{E}[T_i] = \frac{\alpha}{\alpha} + \frac{\alpha}{\alpha-1} + \dots + \frac{\alpha}{\alpha-(\alpha-1)}$$

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. I.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is:

$$\mathbb{E}[T] = \sum_{i=0}^{n-1} \mathbb{E}[T_i] = \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{2} + \dots + \frac{n}{1}$$

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. I.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is: $O\left(\frac{1}{2} + \frac{1}{21} + \dots + \frac{1}{2} + \frac{1}{21}\right)$

$$\mathbb{E}[\mathsf{T}] = \sum_{i=0}^{n-1} \mathbb{E}[\mathsf{T}_i] = \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{2} + \dots + \frac{n}{1}$$
$$= n \cdot H_n. \sim \eta \text{ by}$$

Think-Pair-Share: Say you have collected i coupons so far. Let T_{i+1} denote the number of draws needed to collect the $(i+1)^{st}$ coupon. What is $\mathbb{E}[T_i]$?

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. i.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=0}^{n-1} \mathbb{E}[\mathsf{T}_i] = \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{2} + \dots + \frac{n}{1}$$
$$= n \cdot H_n.$$

• By Markov's inequality, $Pr[T \ge cn \cdot H_n] \le C$

Quiz Question

Consider rolling a fair 6-sided dice, which takes a value in $\{1,2,3,4,5,6\}$ each with probability 1/6. What is the expected number of rolls needed to see each odd number (i.e., see each of $\{1,3,5\}$) at least once?

- We wrote $\underline{T} = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$. Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $\underline{p_i} = \frac{n-i}{n}$.

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n} Var[T_{ij}]$. v...,... Exercise: show that $Var[T_{i}] = \frac{1-p_{i}}{p_{i}^{2}}$, and recall that $p_{i} = \frac{n-i}{n}$.

$$Var[T] = \sum_{i=0}^{n} \frac{1 - p_i}{p_i^2} = \sum_{i=0}^{n} \frac{1}{p_i^2} - \sum_{i=0}^{n} \frac{1}{p_i}$$

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.
- Putting these together:

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.
- Putting these together:

$$Var[T] = \sum_{i=0}^{n} \frac{1 - p_i}{p_i^2} = \sum_{i=0}^{n} \frac{1}{p_i^2} - \sum_{i=0}^{n} \frac{1}{p_i}$$
$$\leq n^2 \cdot \frac{\pi^2}{6} - n \cdot H_n \leq n^2 \cdot \frac{\pi^2}{6}.$$

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.
- Putting these together:

$$Var[T] = \sum_{i=0}^{n} \frac{1 - p_i}{p_i^2} = \sum_{i=0}^{n} \frac{1}{p_i^2} - \sum_{i=0}^{n} \frac{1}{p_i}$$

$$\leq n^2 \cdot \frac{\pi^2}{6} - n \cdot H_n \leq \frac{n^2}{6} \cdot \frac{\pi^2}{6}.$$

Cary number 7,0
· Via Chebyshev's inequality,
$$\Pr[|T - n \cdot H_n| \ge \frac{t}{cn}] \le \frac{V\omega(T)}{c\ln^2} = \frac{6}{c\ln^2}$$

Application 4: Randomized Load Balancing and

Hashing, and 'Ball Into Bins'

Application: Hash Tables

- hash function $h: \underline{\mathcal{Y}} \to [n]$ maps elements to indices of an array.
- Repeated elements in the same bucket are stored as a linked list – 'chaining'.
- Worse-case look up time is proportional to the maximum list length i.e., the maximum number of 'balls' in a 'bin'.

Application: Hash Tables

- hash function $h: U \to [n]$ maps elements to indices of an array.
- Repeated elements in the same bucket are stored as a linked list – 'chaining'.
- Worse-case look up time is proportional to the maximum list length i.e., the maximum number of 'balls' in a 'bin'.

Note: A 'fully random hash function' maps items independently and uniformly at random to buckets. This is a theoretical idealization of practical hash functions.

Application: Randomized Load Balancing

• *m* requests are distributed randomly to *n* servers. Want to bound the maximum number of requests that a single server must handle.

Assignment is often is done via a random hash function so that repeated requests or related requests can be mapped to the same server, to take advantages of caching and other optimizations.

Let \mathbf{b}_i be the number of balls landing in bin i. For $\mathbf{0}$ balls into \mathbf{w} bins what is $\mathbb{E}[\mathbf{b}_i]$? = $\frac{\mathbf{m}}{\mathbf{O}}$

Let b_i be the number of balls landing in bin i. For n balls into m bins what is $\mathbb{R}[b_i]$?

what is $\mathbb{E}[\mathbf{b}_i]$? $\Pr\left[\max_{\underline{j=1,...,n}} \mathbf{b}_i \ge k\right] = \Pr\left[\bigcup_{i=1}^n A_i\right],$

where A_i is the event that $\mathbf{b}_i \geq k$.

Let \mathbf{b}_i be the number of balls landing in bin i. For n balls into m bins what is $\mathbb{E}[\mathbf{b}_i]$?

$$\Pr\left[\max_{i=1,\ldots,n}\mathbf{b}_{i}\geq k\right]=\Pr\left[\bigcup_{i=1}^{n}A_{i}\right],$$

where A_i is the event that $\mathbf{b}_i \geq k$.

Union Bound: For any random events $A_1, A_2, ..., A_n$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_n) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_n).$$

$$A_1$$

$$A_2$$

Let \mathbf{b}_i be the number of balls landing in bin i. For n balls into m bins what is $\mathbb{E}[\mathbf{b}_i]$?

$$\Pr\left[\max_{i=1,\ldots,n}\mathbf{b}_{i}\geq k\right]=\Pr\left[\bigcup_{i=1}^{n}A_{i}\right],$$

where A_i is the event that $\mathbf{b}_i \geq k$.

Union Bound: For any random events $A_1, A_2, ..., A_n$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_n) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_n).$$

$$A_1$$

$$A_2$$

Exercise: Show that the union bound is a special case of Markov's inequality with indicator random variables.

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr\left[\underline{\mathbf{b}_i \geq k} \leq p\right]$ then by the union bound: $\Pr\left[\max_{i=1,\dots,n} \mathbf{b}_i \geq k\right] = \Pr\left[\bigcup_{i=1}^n A_i\right] \leq \underbrace{n \cdot p}.$

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\dots,n}\mathbf{b}_{i}\geq k\right] = \Pr\left[\bigcup_{i=1}^{n}A_{i}\right] \leq n \cdot p.$$

$$\text{Claim 1: Assume } \underline{m} = n. \text{ For } k \geq \frac{c \ln n}{\ln \ln n}, \Pr[\mathbf{b}_{i}\geq k] \leq \frac{1}{n^{c-o(1)}}.$$

$$\Pr\left(\max \mathbf{b}_{i} \geq \frac{c \ln n}{\ln n}\right) \leq \frac{1}{n^{c-o(1)}}$$

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\ldots,n}\mathbf{b}_{i}\geq k\right]=\Pr\left[\bigcup_{i=1}^{n}A_{i}\right]\leq n\cdot p.$$

Claim 1: Assume m=n. For $k \geq \frac{c \ln n}{\ln \ln n}$, $\Pr[\mathbf{b}_i \geq k] \leq \frac{1}{n^{c-o(1)}}$.

• b_i is a binomial random variable with \underline{n} draws and success probability 1/n.

$$\Pr[\mathbf{b}_{i} = j] = \binom{n}{j} \cdot \frac{1}{n^{j}} \cdot \left(1 - \frac{1}{n}\right)^{n-j}.$$

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $Pr[A_i] = Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\ldots,n}\mathbf{b}_{i}\geq k\right]=\Pr\left[\bigcup_{i=1}^{n}A_{i}\right]\leq n\cdot p.$$

Claim 1: Assume m=n. For $k \geq \frac{c \ln n}{\ln \ln n}$, $\Pr[\mathbf{b}_i \geq k] \leq \frac{1}{n^{c-o(1)}}$.

• **b**_i is a binomial random variable with n draws and success

probability
$$1/n$$
.

$$\Pr[\mathbf{b}_i = j] = \binom{n}{j} \cdot \frac{1}{n^j} \cdot \left(1 - \frac{1}{n}\right)^{n-j}.$$

• We have
$$\binom{n}{j} \le \left(\frac{en}{j}\right)$$
 giving $\Pr[\underline{\mathbf{b}_i = j}] \le \left(\frac{e}{j}\right)^j \cdot \left(1 - \frac{1}{n}\right)^{n-j} \le \left(\frac{e}{j}\right)^j$.

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\ldots,n}\mathbf{b}_{i}\geq k\right]=\Pr\left[\bigcup_{i=1}^{n}A_{i}\right]\leq n\cdot p.$$

Claim 1: Assume m=n. For $k \geq \frac{c \ln n}{\ln \ln n}$, $\Pr[\mathbf{b}_i \geq k] \leq \frac{1}{n^{c-o(1)}}$.

• \mathbf{b}_i is a binomial random variable with n draws and success probability 1/n.

$$\Pr[\mathbf{b}_i = j] = \binom{n}{j} \cdot \frac{1}{n^j} \cdot \left(1 - \frac{1}{n}\right)^{n-j}.$$

- We have $\binom{n}{j} \le \left(\frac{en}{j}\right)^j$, giving $\Pr[\mathbf{b}_i = j] \le \left(\frac{e}{j}\right)^j \cdot \left(1 \frac{1}{n}\right)^{n-j} \le \left(\frac{e}{j}\right)^j$.
- Summing over i > k we have:

$$\Pr[b_i \ge k] \le \sum_{\substack{j \ge k \\ k}} \left(\frac{e}{j}\right)^j = \left(\frac{e}{k}\right)^k \cdot \frac{1}{1 - e/k}.$$

We just showed: When n = m (i.e., n balls into n bins)

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{e}{k}\right)^{k} \cdot \frac{1}{1 - e/k}$$

For $k = \frac{\Omega_{\ln n}}{\ln \ln n}$ we have:

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{\ln \ln n}{\ln n}\right)^{\frac{c \ln n}{\ln \ln n}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)}$$

We just showed: When n = m (i.e., n balls into n bins)

For
$$k = \frac{c \ln n}{\ln \ln n}$$
 we have:

$$\Pr[b_i \ge k] \le \left(\frac{e}{k}\right)^k \cdot \frac{1}{1 - e/k}$$

$$\Pr[b_i \ge k] \le \left(\frac{\ln \ln n}{\ln n}\right)^{\frac{c \ln n}{\ln \ln n}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n$$

We just showed: When n = m (i.e., n balls into n bins)

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{e}{k}\right)^{k} \cdot \frac{1}{1 - e/k}$$

For $k = \frac{c \ln n}{\ln \ln n}$ we have:

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{\ln \ln n}{\ln n}\right)^{\frac{c \ln n}{\ln \ln n}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}}.$$

Upshot: By the union bound, For $k = c \frac{\ln n}{\ln \ln n}$ for sufficiently large c,

$$\Pr\left[\max_{i=1,...,n} \mathbf{b}_{i} \ge k\right] \le n \cdot \frac{1}{n^{c-o(1)}} = \frac{1}{n^{c-1-o(1)}}.$$

When throwing *n* balls in to *n* bins, with very high probability the maximum number of balls in a bin will be $O\left(\frac{\ln n}{\ln \ln n}\right)$.

 $\begin{array}{c} \land \quad \text{bin3}, \quad \land \quad \text{bin3}, \\ \text{Pr}\left[\mathbf{b}_i \geq k\right] \leq \left(\frac{e}{k}\right)^k \cdot \frac{1}{1-e/k}. \end{array}$

Think Pair Share: Give an upper bound on this probability using Chebyshev's inequality. Hint: write \mathbf{b}_i as a sum of n indicator random variables and compute $Var[\mathbf{b}_i]$.

By Chebyshev's Inequality: $\Pr[\mathbf{b}_i \ge k] \le \frac{2}{k^2}$.

Setting $k = c\sqrt{n}$, $\Pr\left[\mathbf{b}_i \ge c\sqrt{n}\right] \le \frac{2}{c^2n}$. So via a union bound:

$$\Pr\left[\max_{i=1,\dots,n}\mathbf{b}_{i}\geq c\sqrt{n}\right]\leq \underline{n}\cdot \frac{2}{\underline{c^{2}n}}\leq \frac{2}{\underline{c^{2}}}.$$

By Chebyshev's Inequality: $\Pr[\mathbf{b}_i \geq k] \leq \frac{2}{k^2}$.

Setting $k = c\sqrt{n}$, $\Pr\left[\mathbf{b}_i \ge c\sqrt{n}\right] \le \frac{2}{c^2n}$. So via a union bound:

$$\Pr\left[\max_{i=1,\dots,n}\mathbf{b}_{i}\geq c\sqrt{n}\right]\leq n\cdot\frac{2}{c^{2}n}\leq\frac{2}{c^{2}}.$$

Upshot: Chebyshev's inequality bounds the maximum load by $O(\sqrt{n})$ with good probability, as compared to $O\left(\frac{\log n}{\log\log n}\right)$ for the direct proof. It is quite loose here.

By Chebyshev's Inequality: $Pr[b_i \ge k] \le \frac{2}{k^2}$.

Setting $k = c\sqrt{n}$, $\Pr\left[\mathbf{b}_i \ge c\sqrt{n}\right] \le \frac{2}{c^2n}$. So via a union bound:

$$\Pr\left[\max_{i=1,\dots,n}\mathbf{b}_{i}\geq c\sqrt{n}\right]\leq n\cdot\frac{2}{c^{2}n}\leq\frac{2}{c^{2}}.$$

Upshot: Chebyshev's inequality bounds the maximum load by $O(\sqrt{n})$ with good probability, as compared to $O\left(\frac{\log n}{\log\log n}\right)$ for the direct proof. It is quite loose here.

Chebyshev's and Markov's inequalities are extremely valuable because they are very general – require few assumptions on the underlying random variable. But by using assumptions, we can often get tighter analysis.