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- Reminder that there is a weekly quiz, released after class
on Wednesday and due the next Tuesday 8pm.

- Problem Set 1 was released Monday. Due next Friday 2/11.
Download from the course website.

- See Piazza for a post to organize homework groups.

- Reminder that we encourage you to post your questions
publicly on Piazza - you will receive extra credit for this.
And help your classmates!



Talk This Week

Thursday at 4pm Talya Eden (BU, MIT) will be giving a Zoom talk
on Sublinear-Time Graph Algorithms: Motif Counting and
Uniform Sampling.

- This is a very cool line of work that heavily uses
randomization.

- Link on CICS Events page.

https://umass-amherst.zoom.us/j/94725490374?
pwd=bGtsa®@hjNGx5c1VyNn1GT21WbU5wQT09



Last Time: HR QC

- Motivation behind randomized algorithms and some classic
examples — polynomial identity testing, Freivald's algorithm.

- Complexity classes related to randomized algorithms -
P C ZPP C RP C BPP.

- Probability review - linearity of expectation and variance.



Last Time:
- Motivation behind randomized algorithms and some classic
examples — polynomial identity testing, Freivald's algorithm.

- Complexity classes related to randomized algorithms -
P C ZPP C RP C BPP

- Probability review H linearity of expectatiof and variance.

Today:

- Concentation bounds - Markov's and Chebyshev’s inequalities.
— R —

- The union bound.

- Exponential concentration bounds - Chernoff and Bernstein

- Applications of tools to Quicksort analysis, coupon collecting,
statistical estimation, random hashing.



Application 1: Quicksort with Random Pivots



Quicksort

Quicksort(X): where X = (x,...,xy) is a list of numbers.

1.
2.

If X is empty: return X.

Else: select pivot p uniformly at random from {1,...,n}.

Let Xip = {i € X: X < Xp} and Xu; = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

Return the concatenation of the lists
[Quicksort(Xp), (xp), Quicksort(Xy)].
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If X is empty: return X.
Else: select pivot p uniformly at random from {1,...,n}.

Let Xip = {i € X: X < Xp} and Xu; = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

Return the concatenation of the lists
[Quicksort(Xp), (xp), Quicksort(Xy)].
-
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Quicksort

Quicksort(X): where X = (x,...,xy) is a list of numbers.

1. If Xis empty: return X.
[ 2. Else: select pivot p uniformly at random from {1,...,n}.

3. LetXp = {i € X:xi < xp}and Xy = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

4. Return the concatenation of the lists

[Quwwy (Xp), Quicksort(X)].
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Quicksort

Quicksort(X): where X = (x,...,xy) is a list of numbers.

1. If Xis empty: return X.
2. Else: select pivot p uniformly at random from {1,...,n}.

E Let Xip = {i € X: X < Xp} and Xu; = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

4. Return the concatenation of the lists
[Quicksort(Xp), (xp), Quicksort(Xy)].
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Quicksort

Quicksort(X): where X = (x,...,xy) is a list of numbers.

1.
2.

If X is empty: return X.
Else: select pivot p uniformly at random from {1,...,n}.

Let Xip = {i € X: X < Xp} and Xu; = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

Return the concatenation of the lists
[Quicksort(Xp), (xp), Quicksort(Xy)].
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Quicksort

Quicksort(X): where X = (x,...,xy) is a list of numbers.

1. If Xis empty: return X.

2. Else: select pivot p uniformly at random from {1,...,n}.

{ 3. LetXp = {i € X:xi < xp}and Xy = {i € X: x; > x,} (requires

n — 1 comparisons with x, to determine).

4. Return the concatenation of the lists
[Quicksort(Xp), (xp), Quicksort(Xy)].
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What is th3vvorst case running time of this algorithm?
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Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).
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- Foranyi,j € [n] with i <, letl; = 1if x;,x; are compared at
some point during the algorithm, and 1; = 0 if they are
not. An indicator random variable.
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Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).

- Foranyi,j € [n] with i <, letl; = 1if x;,x; are compared at
some point during the algorithm, and 1; = 0 if they are
not. An indicator random variable.

- We can write T= "7 Z/ i+1 lj- Thus, via linearity of
expectation

n—1 n n—1 n
E[T =YY Ellj=>_ > Prlx,x are compared]

i=1 j=i+1 i=1 j=i+1

So we need to upper bound Pr[x;, x; are compared].
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Randomized Quicksort Analysis

Upper bounding Pr[x;, x; are compared|:

- Assume without loss of generality that x; < x, < ... < X,. This is
just ‘renaming’ the elements of our list. Also recall thati < .

- At exactly one step of the recursion, x;, x; will be ‘split up” with
one landing in Xy; and the other landing in X,,, or one being
chosen as the pivot. x;, x; are only ever compared in this later

. . ——— . .
case — if one is chosen as the pivot when they are split up.
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Randomized Quicksort Analysis

Upper bounding Pr[x;, x; are compared|:

- Assume without loss of generality that x; < x, < ... < X,. This is
just ‘renaming’ the elements of our list. Also recall thati < .

- At exactly one step of the recursion, x;, x; will be ‘split up” with
one landing in Xy; and the other landing in X,,, or one being
chosen as the pivot. x;, x; are only ever compared in this later
case — if one is chosen as the pivot when they are split up.

- The split occurs when some element between x; and x; is
chosen as the pivot. The possible elements are x;, Xj11, - . ., X;.
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Randomized Quicksort Analysis

Upper bounding Pr[x;, x; are compared|: ( | 32 ( j

- Assume without loss of generality that x; < x, < ... < X,. This is
just ‘renaming’ the elements of our list. Also recall thati < .

- At exactly one step of the recursion, x;, x; will be ‘split up” with
one landing in Xy; and the other landing in X,,, or one being
chosen as the pivot. x;, x; are only ever compared in this later
case — if one is chosen as the pivot when they are split up.

- The split occurs when some element between x; and x; is

chosen as the pivot. The p055|b

e elements are x;, Xj41, - - -, Xj.
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- Prlx;, x; are compared] is equal to the probability that either x;

or X; ivot from this list. Thus,
rix;, x; are compared]
__| + 7




Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:
n—1 n
E[T] =" > Prlx,x; are compared].
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n—1 n
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So Far: Expected number of comparisons is given as:
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Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

n—1 n
E[T] = > Prlx,x; are compared].

i=1 j=i+1

And we computed Pr{x;, x; are compared] = Plugging in:

j— 1+1
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Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

n—1 n
E[T] = > Prlx,x; are compared].

i=1 j=i+1

And we computed Pr{x;, x; are compared] = = :+1 Plugging in:
n—1 n n—1n—i+1 Ny~
2 2 \ f\\)l"\
BI=2 0 i =2 2 e e
=1 j=i+1 =1 R=2 n
n—1 n n f
1
< —<2-(h-=1) — =2n-H,=0(nlogn)
i=1 k=1 R = k= ko= T




Concentration Inequalities



Concentration Inequalities

Concentration inequalities are bounds showing that a random
variable lies close to it's expectation with good probability. Key
tools in the analysis of randomized algorithms.

Standard Deviations




Markov's Inequality

The most fundamental concentration bound: Markov's
inequality.
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E[X] = ;Pr(xz u)-u

Proof:



Markov's Inequality

The most fundamental concentration bound: Markov's
inequality.

For any non-negative random variable X and any t > 0:

E[X]
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E[X] = ZPr u) U > Pr(X=u)

u>t

PriX>1t] <

Proof:



Markov's Inequality

The most fundamental concentration bound: Markov's
inequality.

For any non-negative random variable X and any t > 0:

PriX>1t] < E[X]

E[X] = ZPr u)y-u=> Pr(X=

u>t

> Pr(X =

u>t

Proof:
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Markov's Inequality

The most fundamental concentration bound: Markov's
inequality.

For any non-negative random variable X and any t > 0:

PriX>1t] < E[X]

E[X] = ZPr u)y-u=> Pr(X=

u>t

> Pr(X =

u>t P

=t Pr(X > t).
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Proof:



Markov's Inequality

The most fundamental concentration bound: Markov's
inequality.

For any non-negative random variable X and any t > 0:

PriX>1t] < E[X]

E[X] = ZPr u)y-u=> Pr(X=

u>t

> Pr(X =

u>t

=t-Pr(X>1).

Proof:

Plugging in t = E[X] - 5, Pr[X > s - E[X]] < 1/s. The larger the
deviation s, the smaller the probability.



Markov's Inequality

2 PP <P P B
Think-Pair-Share: You have a_Las Vegas algorithm that solves
some decision problem in expected running time T. Show how
to turn this into a Monte-Carlo algorithm with worst case
running time 3T and success probability 2/3.
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Chebyshev's inequality

With a very simple twist, Markov's Inequality can be made
much more powerful in many settings.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X% > t?).
—— —_—
L
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much more powerful in many settings.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X? > t?).

X? is a nonnegative random variable. So can apply Markov's:
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With a very simple twist, Markov's Inequality can be made
much more powerful in many settings.

For any random variable X and any value t > 0:

Pr(|X| > t) = Pr(X? > t?).

E[X?]

t2
- _

X? is a nonnegative random variable. So can apply Markov's:
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Chebyshev's inequality

With a very simple twist, Markov's Inequality can be made
much more powerful in many settings.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X? > t?).
X? is a nonnegative random variable. So can apply Markov's:
E[X?]
Er(\X\ >t)=Pr(X* > t?) < o

Plugging in the random variable X — E[X], gives the standard
form of Chebyshev's inequality:

B 2
Pr(X — E[X]| > t) < L& tzE[x]) 1 Vagx).
o
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Chebyshev's inequality

Var([X]

PrX—E[X]| > 1) < =5
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Chebyshev's inequality

Var([X]

PrX—E[X]| > 1) < =5

What is the probability that X falls s standard deviations from
it's mean?

ST~
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Application 2: Statistical Estimation + Law of
Large Numbers



Concentration of Sample Mean

Theorem: Let X4, ..., X, be pairwise independent random X '>J>4/x
variables with E[X]] = p and Var[X;] = 0% Let X = 1 37 | X, be

their sample average.
Forany € > 0, Pr[X — p| > eo] < 5. c 7 P b
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Concentration of Sample Mean

Theorem: Let X4, ..., X, be pairwise independent random

. . _—\—/N
variables with E[X;] = x and Var[X;] = 2. let X = 1 Z, 1 Xy be
their sample average.

Forany e > 0, Pr[[X — u| > eo] < -

M
- By linearity of expectagjon SLLEX] =
9 (f)@u n i EIX] "
- By linearity of variance, l[}] = n2 Z, 1VarL)§] .
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Concentration of Sample Mean

Theorem: Let X4, ..., X, be pairwise independent random
variables with E[X]] = p and Var[X;] = 0% Let X = 1 37 | X, be
their sample average.

Forany e > 0, Pr[[X — u| > e0] < L.

- By linearity of expectation, EX] = 1 3> | E[X] =
- By linearity of variance, E[X] = 2 M var[X] = %.
- Plugging into Chebyshev's mequaﬁ({
Var[X] 1

PrIX — p| > < —.
Xyl = el < "5 =
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Concentration of Sample Mean

Theorem: Let X4, ..., X, be pairwise independent random
variables with E[X]] = p and Var[X;] = 0% Let X = 1 37 | X, be
their sample average. —
Forany e > 0, Pr[[X — u| > eo] < L.

_ -
- By linearity of expectation, EX] = 1 3> | E[X] =
- By linearity of variance, E[X] = 2 M var[X] = %.

- Plugging into Chebyshev's inequality:

, PrX — u| > eo] < Var[X] = i

gf 6 Pf( Xﬂvhééj)

This is the weak law of large numbers.
| = \
E/ "orm! 14
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Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g., 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

15



Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g., 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

15



Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g., 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

15



Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g., 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

am n individuals uniformly at random, with replacement.
?r@s) Fje / g

Let X; =1 |fthe it individual has the property, and 0 otherwise.
X1, ..., X, are i.i.d. draws from Bern(p) - each is 1 with . \
probability p and 0 with probability 1— p. Z/%,‘ 15 \0"“”’“ N
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Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g., 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

- Sample n individuals uniformly at random, with replacement.

- Let X; = 1if the i individual has the property, and 0 otherwise.

Xi,..., X, are i.i.d. draws from Bern(p) - each is 1 with
probability p and 0 with probability1 —p.
- E[X] =pandVar[X] =p(1-p).< P

- Thus, letting p = 1 37 X;, E[p] = p and Var[p] = 20-2) < &,
= — T

15



Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g., 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

- Sample n individuals uniformly at random, with replacement.

- Let X; = 1if the i individual has the property, and 0 otherwise.
Xi,..., X, are i.i.d. draws from Bern(p) - each is 1 with
probability p and 0 with probability 1— p.

- E[Xj] = p and Var[X] = p(1—p).

- Thus, letting p = 1 3> X;, E[p] = p and Var[p] = 20-2) < &,

n

- By Chebyshev's inequality Pr[Lp f£\ %i] < 6%}.
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Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g., 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

- Sample n individuals uniformly at random, with replacement.

- Let X; = 1if the i individual has the property, and 0 otherwise.
Xi,..., X, are i.i.d. draws from Bern(p) - each is 1 with
probability p and 0 with probability 1— p.

- E[Xj] = p and Var[X] = p(1—p).

- Thus, letting p = 1 3> X;, E[p] = p and Var[p] = 20-2) < &,

n

- By Chebyshev's inequality Pr[|p — p| > ¢] < G%Za

Upshot: If we take n = £ samples, then with probability at least
1—6, p will be a ¢ estimate to the true proportion p. A prototypical
sublinear time algorithm. 15



Application to Success Boosting

d
Yecsm bl 02/)
Think-Pair-Share: You have a Monte-Carlo algorithm with
worst case running time I and success probability 2/3. Show
how to obtain, for any ¢ € (0, 1), a Monte-Carlo algorithm with
worse case running time M and success probabilitylsi
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) fe d
K 0 M st aped e nde
E@} = Z B.:X| by ?_f T2 | | \[;g M@E%(\}‘n % ,9 )
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Application 3: Coupon Collecting



Coupon Collector Problem

There is a set of n unique coupons. At each step you draw a
random coupon from this set. How many steps does it take
you to collect all the coupons?
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Coupon Collector Problem

There is a set of n unique coupons. At each step you draw a
random coupon from this set. How many steps does it take
you to collect all the coupons?

m 1097

Your
Collection:

N~

Think-Pair-Share: Say you have collected i coupons so far. Let

T;.1 denote the number of draws needed to col ect the (i +
N 464*20*

coupon. What is E[T[]? = == i ? ‘el -'
[T =



Coupon Collector Analysis

Think-Pair-Share: Say you have collected i coupons so far. Let
T.,; denote the number of draws needed to collect the (i + 1)
coupon. What is E[T;]?
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Think-Pair-Share: Say you have collected i coupons so far. Let
T.,; denote the number of draws needed to collect the (i + 1)
coupon. What is E[T;]?

- T; is a geometric random variable with success probability

pi="= le, PrTi =] = pi(1—p;y~".
- Exercise: verify that E[T;] = 1/p; = .

n—i
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Coupon Collector Analysis

Think-Pair-Share: Say you have collected i coupons so far. Let

T.,; denote the number of draws needed to collect the (i + 1)
coupon. What is E[T;]?

- T;is a geometric random variable with success probability
pi="=0 e, PrT; = j] = pi(1 — pry—".
- Exercise: verify that E[T] = 1/p; = ;"=

- By linearity of expectation, the expected number of draws
to collect all the coupons is:

n—1
E[T] = > ET]
l:’O/
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Coupon Collector Analysis

Think-Pair-Share: Say you have collected i coupons so far. Let

T.,; denote the number of draws needed to collect the (i + 1)
coupon. What is E[T;]?

- T;is a geometric random variable with success probability
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Coupon Collector Analysis

Think-Pair-Share: Say you have collected i coupons so far. Let

T.,; denote the number of draws needed to collect the (i + 1)
coupon. What is E[T;]?

- T;is a geometric random variable with success probability
pi="=0 e, PrT; = j] = pi(1 — pry—".
- Exercise: verify that E[T] = 1/p; = ;"=

- By linearity of expectation, the expected number of draws
to collect all the coupons is: n( Ly

n—1
n n n n
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Coupon Collector Analysis

Think-Pair-Share: Say you have collected i coupons so far. Let
T.,; denote the number of draws needed to collect the (i + 1)
coupon. What is E[T;]?

- T;is a geometric random variable with success probability
pi="=0 e, PrT; = j] = pi(1 — pry—".
- Exercise: verify that E[T] = 1/p; = -%.

- By linearity of expectation, the expected number of draws
to collect all the coupons is:

n—1
n n n n
E[T =Y E[T)] = —+ -
i=0

n_1—|—...f—|-...

:n'Hn.

- By Markov's i lity, PrT > cn-H,| < =
By Markov's inequality, Pr[T > cn - Hp] < s



Consider rolling a fair 6-sided dice, which takes a value in
{1,2,3,4,5,6} each with probability 1/6. What is the expected
number of rolls needed to see each odd number (i.e., see each
of {1,3,5}) at least once?

"y
o3
o

DF AN

\s\. 0

E] ?E[Tl + B0 + B[]

Dl 546E
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Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev's inequality in
place of Markov's.
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Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev's inequality in
place of Markov's.

- We wrote T = Y7 T;, which let us compute E[T] = n - Hy.
I =0
- Also have Var[T] = 5.7 Var[T;]. Why?

'L\«/ T\ o2 ~\ Aé}f U\w
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Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev's inequality in
place of Markov's.

- Wewrote T=3"1"/ T, which let us compute E[T] = n - Hy.
- Also have Var[T] = Z,»:O var[T;]. Why?

- Exercise: show that Var[T;] = = p’ ,and recall that p; = ’.
\_\
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Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev's inequality in
place of Markov's.

- Wewrote T=3"1"/ T, which let us compute E[T] = n - Hy.
- Also have Var[T] = Z,»:O var[T;]. Why?
- Exercise: show that Var[T;] = = p’ ,and recall that p; = %’

- Putting these together: \ | ol
D N N I N A
i _ S _
—

AT A

n

Var[T] =

i=0 i
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Can get a tighter tail bound using Chebyshev's inequality in
place of Markov's.

- We wrote T = Y_"" ' T;, which let us compute E[T] = n - Hy.
+ Also have Var[T] = 3-7 ' ar[T;]. Why?

- Exercise: show that Var[T;] = 1;/_2‘3", and recall that p; = %
- Putting these together:

n

Var[T]:ZT_pi

2
i=0 p’

Coupon Collector Analysis
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Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev's inequality in
place of Markov's.

- Wewrote T=3"1"/ T, which let us compute E[T] = n - Hy.
- Also have Var[T] = Z,»:O var[T;]. Why?

- Exercise: show that Var[T;] = = p’ ,and recall that p; = ;’.
- Putting these together:

n p n 1 n ,]
I _ _
_,;p? ;p;

Var[T] =

i=0 i
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Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev's inequality in
place of Markov's.

- Wewrote T=3"1"/ T, which let us compute E[T] = n - Hy.
- Also have Var[T] = Z,»:O var[T;]. Why?

- Exercise: show that Var[T;] = = p’ ,and recall that p; =

- Putting these together:

n

Var[T]—E:T_p’l—Zn:l—zn:l
- P _/:opiz i—o "

i=0

2 2
< n2 . l . .
< 5 n

V|a Chebyshev's mequahty PrT—n-Hnl = cn] <

L0 50 4 N>
oM & ~n




Application 4: Randomized Load Balancing and
Hashing, and ‘Ball Into Bins’



Balls Into Bins

| throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

Bin 1 Bin 2 Bin 3
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Balls Into Bins

| throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

Bin 1 Bin 2 Bin 3
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Balls Into Bins

fiat

=~
| throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

Cleee [so ] Lee |

Bin 1 Bin 2 Bin 3
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Application: Hash Tables

128-bit IP addresses Hash Table
<

172.16.254.1

R WN R

192.168.1.34

16.58.26.164 h( 16.58.26.164 )= 1590

S

- hash function h U— [n] maps elements to indices of an array.

- Repeated elements in the same bucket are stored as a linked
list - ‘chaining.

- Worse-case look up time is proportional to the maximum list
length - i.e,, the maximum number of ‘balls’ in a ‘bin’.
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Application: Hash Tables

Hash Table

128-bit IP addresses

172.16.254.1

R WN R

192.168.1.34

16.58.26.164 h( 16.58.26.164 )= 1590

S

- hash function h : U — [n] maps elements to indices of an array.

- Repeated elements in the same bucket are stored as a linked
list - ‘chaining.

- Worse-case look up time is proportional to the maximum list
length - i.e,, the maximum number of ‘balls’ in a ‘bin’.

Note: A ‘fully random hash function’ maps items independently and
uniformly at random to buckets. This is a theoretical idealization of
practical hash functions. ”



Application: Randomized Load Balancing

s @

Cllenl Requests

Va / N
AR AR ... AR

(o 11n1] (o 1111] (o111

Server 1 Server 2 Server n

- m requests are distributed randomly to n servers. Want to
bound the maximum number of requests that a single server
must handle.

-} Assignment is often is done via a random hash function so that
repeated requests or related requests can be mapped to the
same server, to take advantages of caching and other

optimizations.
23



Balls Into Bins Analysis

m N
Let b; be the number of balls landing in bin i. For & balls into ¥ bins
what is E[b;]? :T’“
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Balls Into Bins Analysis

Let b; be the number of balls landing in bin i. For n balls into m bins
what is E[b;]? }w\s A

n
Pr {max b; > k} = Pr [U Ai] ,
where A; is the event that b; > k.

P—)
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Balls Into Bins Analysis

Let b; be the number of balls landing in bin i. For n balls into m bins
what is E[b;]?
n
Pr Ln?axn b > k} =Pr [LJ] A;] )
1=
where A; is the event that b; > k.
Union Bound: For any random events A, A, ..., Ay,

Pr(AyUAU...UAp) < Pr(A) + Pr(Ay) + ... + Pr(An).
1o 2

—_— 2
R
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Balls Into Bins Analysis

Let b; be the number of balls landing in bin i. For n balls into m bins
what is E[b;]?

n
Pr[max b,~>k} :Pr[UAi],

i=1,...,n )
=1
where A; is the event that b; > k.

Union Bound: For any random events Ay, Ay, ..., Ap,

Pr(\/:\luéu...uAn)g P\r@)JrEr(/A_z)Jr...JrPr(An).

——

Exercise: Show that the union bound is a special case of Markov's
inequality with indicator random variables. ”



Balls Into Bins Direct Analysis

Let b; be the number of halls landing in bin i. If we can prove that for
any i, Pr[Aj] =\ Pr[b; > R] < p, then by the union bound:
— /l,) 4 ? +P “ v~

n
Pr L__rpaxn b; > I?} = Pr [U A,l <n-p.

7777 I*’I _—

—
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Balls Into Bins Direct Analysis

Let b; be the number of balls landing in bin i. If we can prove that for
any i, Pr[Aj] = Pr[b; > R] < p, then by the union bound:

n
Pr L__rpaxn b; > I?} = Pr [U A,l <n-p.

""" i=1

bl bias lDl
Claim 1: Assume m = n. For k > 22, Pr[b; > k] < .
—_— I
R can < ,L \< (\IQ_ND
Pr(mexbi? n | S o
——
O ._Lﬂ_ﬂ\
‘r\ ln A
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Balls Into Bins Direct Analysis

Let b; be the number of balls landing in bin i. If we can prove that for
any i, Pr[Aj]] = Pr[b; > R] < p, then by the union bound:

Pr[max b; >k}_PrlUA]<n p.

""" i=1

H . _ clnn . 1
Claim 1: Assume m = n. For kR > =i, Prb; > R] < ——x

- b;is a binomial random variable with n draws and success
robability 1/n. .
probabillty 1/ ‘ n\ 1 1\
Pribi=jl=1(.) —-(1—= .
J n/ 1

\gw\\D

I I iy

glw\\
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Balls Into Bins Direct Analysis

Let b; be the number of balls landing in bin i. If we can prove that for
any i, Pr[Aj] = Pr[b; > R] < p, then by the union bound:

n
Pr [,__rpaxn b; > i?} = Pr [U A,l <n-p.

""" i=1

H . _ clnn . 1
Claim 1: Assume m = n. For kR > =, Prib; > R] < ——.

- b;is a binomial random variable with n draws and success
probability 1/n.

e

WERUS
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Balls Into Bins Direct Analysis

Let b; be the number of balls landing in bin i. If we can prove that for
any i, Pr[Aj]] = Pr[b; > R] < p, then by the union bound:

Pr[max b; >k}_PrlUA]<n p.

""" i=1

i . _ clnn ) 1
Claim 1: Assume m = n. For kR > =i, Prb; > R] < ——x

- b;is a binomial random variable with n draws and success
probability 1/n.

/) 1 "
e ()5(-2)”
- We have (7)\§ﬁ”l giving Pr[b; = j] < (}5)} .(1_\%&/ < (?)j
- Summing over j > k we have:

e\rk 1
Prlb; >k]<z< ) ( ) ek
3

;i@ (*'Qk %; >i 25




Balls Into Bins Direct Analysis

We just showed: When n = m (i.e, n balls into n bins)

1—e/R
b % —
For k :G:l?ﬁf; we have:
N9
clnn
nlnnY o 1
P> < ¥
Prib; > K] < ( nn ) G— elnlnn)/(cln H)J
O
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Balls Into Bins Direct Analysis

We just showed: When n = m (i.e, n balls into n bins)

e\R 1
- >Rl < [ 2=
kzlan Pribi > K] < fe) T_e/k

——

For k = &0 we have:
————

p—

clnn
InlnnY e l 7
P> < :
Pr[b,_k]_( nn ) 1_(e[nln>§(<(clnﬂ)

n

[alnloe - \/\L\n Taln
<, v
/\(\\n‘r\f‘ .]ﬂﬂ— C\ﬂr\
W

(& :
GU‘),(D\mn ()(D'C
e 0
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Balls Into Bins Direct Analysis

We just showed: When n = m (i.e, n balls into n bins)

Pribi > K] < (%)k' 1 —1e//?

e have:

_ clnn
ForkR= =5 W

mlnn
Pr[b,-zfe]g(mmn) 1 ]

lnn “1—(elnlnn)/(clnn) — nco(

Upshot: By the union bound, For k =c¢ ””n for sufficiently large c,

Inl

1 1

Pr L_mf.)f b =z k] nc—o(W) = nc—1-o(1)

When throwing n balls in to n bins, with very high probability the
maximum number of balls in a bin will be O (F1L-).
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Balls Into Bins Via Chebyshev's Inequality

N sy b

n owrballs into bins analysis we directly bound
e\k 1

Think Pair Share: Give an upper bound on this probability
using Chebyshev’s inequality. Hint: write b; as a sum of n

indicator random vamables and compute Var[bj].
AN

\fMDOJ Z\/ML D S0k S

/’2 5 1?

\/é\/[[g}j :E_\i\j - (Eé}) ( \Q
< |

\ |
2 FLiiz
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Balls Into Bins Via Chebyshev's Inequality

By Chebyshev's Inequality: Pr[b; > k] < 2.
Setting k = cy/n, Pr [b; > ¢y/n] < % So via a union bound:
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Balls Into Bins Via Chebyshev's Inequality

By Chebyshev's Inequality: Pr[b; > k] < 2.
Setting k = cy/n, Pr [b; > ¢y/n] < % So via a union bound:

Pr[maxb,>cﬁ}<n- < .
i=1,...,n cn ¢
Upshot: Chebyshev's inequality bounds the maximum load by

O(yv/n) with good probability, as compared to O ([olg()ign> for
the direct proof. It is quite loose here.
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Balls Into Bins Via Chebyshev's Inequality

By Chebyshev's Inequality: Pr[b; > k] < 2.
Setting k = cy/n, Pr [b; > ¢y/n] < % So via a union bound:

Pr| max b;>cvn| <n-: < .
i=1,...n a2n — ¢

Upshot: Chebyshev's inequality bounds the i load by
%With good probability, as comparedo 0 (lolgofgg’nj!for

the direct proof. It is quite loose here.

Chebyshev’s and Markov's inequalities are extremely valuable
because they are very general — require few assumptions on
the underlying random variable. But by using assumptions, we
can often get tighter analysis.
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