
COMPSCI 690RA: Randomized Algorithms and
Probabilistic Data Analysis

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2022.
Lecture 12 (Final Lecture!)

1

Logistics

• The final exam is this Friday 5/5 at 10:30am in this room.
• I will hold extended office hours today from 2-4pm and
tomorrow from 4-6pm.

• I will accept final project submissions up until Sunday 5/8
at 11:59pm.

• Please complete your SRTI for the class when you get a
chance!

2

Summary

Last Week: Finish up Markov Chains Unit.

• Mixing time analysis via coupling.

• Example applications to shuffling and random walks on the
hypercube.

• Markov Chain Monte Carlo (MCMC) methods.

• Example of reductions from counting to sampling (e.g., for
counting independent sets).

Today: The Probabilistic Method (not on the exam)

• From probabilistic proofs to algorithms via the method of
conditional expectations.

• The Lovasz local lemma for events with ‘bounded’ correlation.

• Entropic proof of the algorithmic LLL.

3

First...a detour

4

The St. Petersburg Paradox

Consider the following game: you keep flipping a fair coin,
until it hits tails. You win $2k+1, where k is the number of
heads you see.

Let X be the amount of money you win. What is E[X]?

How much money would you pay to play this game? Why?

5

Expected Utility Theory

One Solution to the Paradox: The expected value of the game
is not E[X], but E[U(X)] where U is some utility function.

U(·) determines how much actual value you derive from a
given amount of money. We expect generally that U is concave
– diminishing marginal utility.

6

Maximizing Expected Log Winnings

What is E[U(X)] = E[log2(X)] for our game?

7

A More ‘Realistic’ Scenario

You are given $25 and are allowed to play the following game
repeatedly: You have a biased coin that hits heads 60% of the time.
You can wager $w on if the coin hits heads or tails. If you are correct,
you win $w, and if you are incorrect, you lose $w.

How should you determine the size of your bets?

E[log(Xi+1)|Xi] = .6 · log(Xi + w) + .4 · log(Xi − w).
Write w = r · Xi. Then:

E[log(Xi+1)|Xi] = .6 · log(Xi · (1+ r)) + .4 · log(Xi · (1− r))
= log(Xi) + .6 log(1+ r) + .4 log(1− r).

To maximize .6 log(1+ r) + .4 log(1− r), set its derivative to 0:

0 =
.6
1+ r −

.4
1− r .

Optimal r = 0.2. I.e., you should bet 20% of your money each time.
8

Kelly Criterion

The prior analysis is a special case of the Kelly criterion.

r = p− q
b .

Lots of interesting topics here, closely related to Markov chains
and Martingales.

9

The Probabilistic Method

9

The Probabilistic Method

The Basic Idea: Suppose we want to prove that a
combinatorial object satisfying a certain property exists. Then
it suffices to exhibit a random process that produces such an
object with probability > 0.

A common tool: For a random variable with E[X = µ],
Pr[X ≥ µ] > 0 and Pr[X ≤ µ] > 0.

10

Example 1: Max-Cut

Prove that for any graph with m edges, there exists a cut containing
at least m/2 edges.

Consider a random partition of the nodes (each node is included
independently in each half with probability 1/2). Let X be the size of
the corresponding cut.

We have E[X] =

Therefore, Pr[X ≥ m/2] > 0. So every graph with m edges has a cut
containing at least m/2 edges.

11

Example 2: 3-SAT

Prove that for any 3-SAT formula, there is some assignment of the
variables such that at least 7/8 of the clauses are true.

Consider a random assignment of the variables. And let X be the
number of satisfied clauses.

(x1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x̄4 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ . . .

What is E[X]?

So, Pr[X ≥ 7/8m] > 0. So there is an assignment satisfying at least
7/8 of the clauses in every 3-SAT formula.

12

From Existence to Efficient Algorithms

Max-Cut Approximation: A randomly sampled partition cuts m/2
edges in expectation. But how many partitions do we need to sample
before finding a cut of size at least m/2 with good probability?

Let p be the probability of finding a cut of size ≥ m/2. Then:

E[X] = m
2 ≤ (1− p) ·

(m
2 − 1

)
+ p ·m

=⇒ 1
m
2 + 1 ≤ p.

How many attempts do we need to take to find a large cut with
probability at least 1− δ? O(m · log(1/δ))

13

Method of Conditional Expectations

We can also derandomize this algorithm in a very simple way.

Let x1, x2, . . . ∈ {0, 1} indicate if the vertices are included on one side
of the random partition.

Consider determining these randsom variables sequentially.

m
2 = E[X] = 1

2E[X|x1 = 1] + 1
2E[X|x1 = 0].

Set x1 = v1 such that E[X|x1 = v1] ≥ m
2 Then we have:

m
2 ≤ E[X|x1 = v1] =

1
2E[X|x1 = v1, x2 = 1] + 1

2E[X|x1 = v1, x2 = 0]

Set x2 = v2 such that E[X|x1 = v1, x2 = v2] ≥ m
2 . And so on...

14

Conditional Expectations for Cuts

How can we pick vi such that E[X|x1 = v1, . . . , xi−1 = vi−1] ≥ m
2 ?

E[X|x1 = 0, . . . , x4 = 1] = 1
2 · 10+ 2 = 7E[X|x1 = 0, . . . , x4 = 0] =

1
2 · 10+ 1 = 6

Natural greedy approach: add vertex i to the side of the cut to which
it has fewest edges.

Yields a 1/2 approximation algorithm for max-cut. 16/17 is the best
possible assuming P ̸= NP, and .878 is the best known (Goemans,
Williamson) and optimal assuming the unique games conjecture.

15

Large Girth Graphs

The girth of a graph is the length of its shortest cycle.

Natural Question: How large can the girth be for a graph with m
edges?

Erdös Girth Conjecture: For any k ≥ 1, there exists a graph with
m = Ω(n1+1/k) edges and girth 2k+ 1.

16

Relevance to Spanners

A spanner is a subgraph that approximately preserves shortest path
distances. We say G′ is a spanner for G with stretch t if for all u, v
dG′(u, v) ≤ t · dG(u, v).

Even when G′ excludes a single edge, t ≥ girth(G)− 1.

Erdös Girth Conjecture =⇒ there are no generic spanner
constructions with o(n1+1/k) edges and stretch ≤ 2k− 1.

17

Large Girth Graphs via Probabilistic Method

Theorem
For any fixed k ≥ 3, there exists a graph with n nodes, Ω(n1+1/k)
edges, and girth k+ 1.

Sample and Modify Approach: Let G be an Erdös-Renyi random
graph, where each edge is included independently with probability
p = n1/k−1. Remove one edge from every cycle in G with length ≤ k,
to get a graph with girth k+ 1.

Let X be the number of edges in the graph and Y be the number of
cycles of length ≤ k. Suffices to show E[X− Y] = Ω(n1+1/k).

E[X] = n(n− 1)
2 · p =

1
2 ·

(
1− 1

n

)
· n1+1/k.

E[Y] =
k∑
i=3

(
n
i

)
· (i− 1)!

2 · pi ≤
k∑
i=3

nipi =
k∑
i=3

ni/k < k · n.

18

Large Girth Graphs via Probabilistic Method

So far: An Erdös-Renyi random graph with p = n1/k−1 has expected
number of edges (X) and cycles of length ≤ k− 1 (Y) bounded by:

E[X] = 1
2 ·

(
1− 1

n

)
· n1+1/k

E[Y] < k · n.

When k is fixed and n is sufficiently large, k · n≪ n1+1/k. Thus,

E[X− Y] = Ω(E[X]) = Ω(n1+1/k),

proving the theorem.

19

Lovasz Local Lemma

19

Probabilities of Correlated Events

Suppose we want to sample a random object that avoids n ‘bad
events’ E1, . . . , En.

E.g., we want to sample a random assignment for variables that
satisfies a a k-SAT formula with n clauses. Ei is the event that clause
i is not satisfied.

If the Ei are independent, and Pr[Ei] < 1 for all i then:

Pr
[
¬

n∪
i=1

Ei

]
=

n∏
i=1

(1− Ei) > 0.

What if the events are not independent?

If
∑n

i=1 Pr[Ei] < 1 then by a union bound,

Pr
[
¬

n∪
i=1

Ei

]
≥ 1−

n∑
i=1

> 0.

As n gets large, the union bound gets very weak – each event has to
occur with probability < 1/n on average. 20

Bounded Correlation

Consider events E1, . . . , En where Ei is independent of any j /∈ Γ(i)
(the neighborhood of i in the dependency graph

E.g., consider randomly assigning variables in a k-SAT formula with n
clauses, and let Ei be the event that clause i is unsatisfied.

(x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄4 ∨ x3) ∧ (x4 ∨ x5 ∨ x6) ∧ (¬x4 ∨ x6 ∨ x7) . . .

Theorem (Lovasz Local Lemma)
Suppose for a set of events E1, E2, . . . , En, Pr[Ei] ≤ p for all i, and that
each Ei is dependent on at most d other events Ej (i.e., |Γ(i)| ≤ d,
then if 4dp ≤ 1:

Pr
[
¬

n∪
i=1

Ei

]
> (1− 2p)n > 0.

In the worse case, d = n− 1 and this is similar to the union bound.
But it can be much stronger. 21

LLL Application: k-SAT

Theorem
If no variable in a k-SAT formula appears in more than 2k

4k clauses,
then the formula is satisfiable.

Let Ei be the event that clause i is unsatisfied by a random
assignment. Pr[Ei] ≤ 1

2k = p.

|Γ(i)| ≤ k · 2k4k = 2k
4 = d

So 4dp = 4 · 1
2k ·

2k
4 ≤ 1, and thus Pr

[
¬
∪n
i=1 Ei

]
> 0. I.e., a random

assignment satisfies the formula with non-zero probability.

22

Algorithmic LLL

Important Question: Given an Lovasz Local Lemma based proof of
the existence, can we convert it into an efficient algorithm?

Moser and Tardos [2010] prove that a very natural algorithm can be
used to do this.

Let E1, . . . , En be events determined by a set of independent random
variables V = {v1, . . . , vm}. Let v(Ei) be the set of variables that Ei
depends on.

Resampling Algorithm:

1. Assign v1, . . . , vm random values.

2. While there is some Ei that occurs, reassign random values to all
varables in v(Ei).

3. Halt when an assignment is found such that no Ei occurs.

23

Algorithmic LLL

Theorem (Algorithmic Lovasz Local Lemma)
Consider a set of events E1, E2, . . . , En determined by a finite set of
random variables V. If for all i, Pr[Ei] ≤ p and |Γ(i)| ≤ d, and if
ep(d+ 1) ≤ 1, then Resampling finds an assignment of the
variables in V such that no event Ei occurs. Further, the algorithm
makes O(nd) iterations in expectation.

Application to k-SAT: Consider a k-SAT formula where no variable
appears in more than 2k

5k clauses. Let Ei be the event that clause i is
unsatisfied by a random assignment

Pr[Ei] ≤
1
2k = p and |Γ(i) ≤ k · 2

k

5k =
2k
5 = d.

Have ep(d+ 1) ≤ e
5 +

e
2k ≤ 1 as long as k ≥ 3, so the theorem applies,

giving a polynomial time algorithm for this variant of k-SAT.
24

Entropic Proof of Algorithmic LLL

Moser’s ‘entropic proof’ of the algorithmic LLL uses a
particularly cool technique.

Focus on the case of k-SAT where |Γ(i)| < d = 2k
8 = 2k−3.

• In each iteration of rerandomization, the algorithm uses k
random bits. So for T iterations it uses Tk random bits.

• We will show that if we run the algorithm for too long,
then we obtain a compression of these bits into a string of
< Tk bits, which shouldn’t be possible (since they are
random bits and incompressible).

Incompressibility Fact: For any function f mapping inputs in
{0, 1}t to distinct, possibly variable length binary output
strings, if s is a uniform random t-bit binary strong, then for
any integer c, Pr[length[f(s)] ≤ t− c] ≤ 1

2c−1 . 25

Compressing Bits While Solving k-SAT

• Initialize random assignments for the m variables using m bits.

• Iterate through the clauses, recording ‘1’ for each that is
satisfied, and recording ‘0’ when you reach an unsatisfied
clause i.

• Run LocalCorrect(i). Then move on to the next clause.

• After completion of all clauses, record the final state of the m
variables using m bits.

LocalCorrect(i):
• Resample random values for the variables in clause i, using k
bits (but don’t record them!).

• While some clause j ∈ Γ(i)∪ {i} is unsatisfied, pick the first such
j, and record ‘0’ along with j using k− 3 bits. Then run
LocalCorrect(j).

• Record ‘1’ upon termination. 26

Compression Illustration

27

Compressing Bits While Solving k-SAT

Claim 1: If the algorithm runs for T iterations, it uses m+ Tk random
bits.

Claim 2: If the algorithms runs for T iterations it records a transcript
of m+ n+ T(k− 1) bits.

Claim 3: The random bits used by the algorithm can be recovered
uniquely from the transcript.

We can work backward from the final state, recovering the state of
the variables at each step, and hence all the random bits. Critically,
when a clause is rerandomized, we know exactly how its bits were
been set before rerandomization (there is just a single unsatisfying
assignment for the clause).

So we have compressed B = m+ Tk bits to B′ = m+ n+ T(k− 1) bits.
Setting, T = n+ c we have B = m+ Tk and B′ = m+ Tk− c. Thus, by
our incompressibility claim, the algorithm must terminate in n+ c
steps with probability 1− 1/2c−1. 28

Recovery Illustration

29

Thanks for a great semester!

30

