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Logistics

• Problem Set 4 is due next Tuesday 5/3 at 8pm.
• The final exam is next Friday 5/5 at 10:30am for those that
are taking it.

• I will hold extended office hours Wed. 5/3 from 2-4pm and
Thurs. 5/4 from 4-6pm.

• I will accept final project submissions up until Sunday 5/8
at 11:59pm.

• SRTI’s are open for this course. It would be very helpful to
me if you can fill them out!

• This was my first time teaching this course, so feedback on
what worked and what didn’t is really useful to me.
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Summary

Last Week: More Advanced Markov Chains.

• The gambler’s ruin problem.

• Start on Markov chains and their analysis.

• Aperiodicity and stationary distribution of a Markov chain.

• Start on mixing time.

Today: Finish up Markov Chains

• Mixing time analysis via coupling.

• Markov Chain Monte Carlo (MCMC) methods.
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Fundamental Theorem of Markov Chains

Theorem (The Fundamental Theorem of Markov Chains)
Let X0, X1, . . . be a Markov chain with a finite state space and
transition matrix P ∈ [0, 1]m×m. If the chain is both irreducible and
aperiodic,

1. There exists a unique stationary distribution π ∈ [0, 1]m with
π = πP.

2. For any states i, j, limt→∞ Pr[Xt = i|X0 = j] = π(i). I.e., for any
initial distribution q0, limt→∞ qt = limt→∞ q0Pt = π.

Question for today: How long does it take us to converge close to
this stationary distribution?
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Mixing Time

Definition (Mixing Time)
Consider a Markov chain X0, X1, . . . with unique stationary
distribution π. Let qi,t be the distribution over states at time t
assuming X0 = i. The mixing time is defined as:

τ(ϵ) = min
{
t : max

i∈[m]
∥qi,t − π∥TV ≤ ϵ

}
.

Note: If ∥qi,t − π∥TV ≤ ϵ then for any t′ ≥ t, ∥qi,t′ − π∥TV ≤ ϵ. Coupling
Motivation: Last time we showed that

max
i∈[m]

∥qi,t − π∥TV ≤ max
i,j∈[m]

∥qi,t − qj,t∥TV.

By Kontorovich-Rubinstein duality, for Xt, Yt distributed by evolving
the chain for t steps starting from state i or j respectively, we have:

max
i,j∈[m]

∥qi,t − qj,t∥TV ≤ max
i,j∈[m]

Pr[Xt ̸= Yt]. 5



Formal Coupling Definition

Definition (Coupling)
For a finite Markov chain X0, X1, . . . with transition matrix P ∈ Rm×m,
a coupling is a joint process (X0, Y0), (X1, Y1), . . . such that:
1. X0 = i and Y0 = j for some i, j ∈ [m].

2. Pr[Xt = j|Xt−1 = i] = Pr[Yt = j|Yt−1 = i] = Pi,j

3. If Xt = Yt, then Xt+1 = Yt+1.

Theorem (Mixing Time Bound via Coupling)
For a finite, irreducible, and aperiodic Markov chain X0, X1, . . . and
any valid coupling (X0, Y0), (X1, Y1), . . . letting
Ti,j = min{t : Xt = Yt|X0 = i, Y0 = j},

max
i∈[m]

∥qi,t − π∥TV ≤ max
i,j∈[m]

∥qi,t − qj,t∥TV ≤ max
i,j∈[m]

Pr[Ti,j > t].
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Coupling Example: Mixing Time of Shuffling

How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is ϵ-close in
TV distance to the uniform distribution over all permutations?

Coupling:

• Let X0, X1, . . . be the Markov chain where a random card is
moved to the top in each step.

• Let Y0, Y1 be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.

• Can check that this is a valid coupling since Xt, Yt have the
correct marginal distributions, and since
Xt = Yt =⇒ Xt+1 = Yt+1

• Observe that Xt = Yt as soon as all c unique cards have been
swapped at least once. How many swaps does this take?
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Coupling Example: Mixing Time of Shuffling

max
i∈[m]

∥qi,t − π∥TV ≤ max
i,j∈[m]

Pr[Ti,j > t]

≤ Pr[< c unique cards are swapped in t swaps]

By coupon collector analysis for t ≥ c ln(c/ϵ), this probability is
bounded by ϵ. In particular, by the fact that

(
1− 1

c
)c ln c/ϵ ≤ ϵ

c plus a
union bound over c cards.

Thus, for t ≥ c ln(c/ϵ),
maxi∈[m] ∥qi,t − π∥TV ≤ maxi,j∈[m] ∥qi,t − qj,t∥TV ≤ ϵ.

I.e., τ(ϵ) ≤ c ln(c/ϵ).
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Coupling Example: Random Walk on a Hypercube

Let X0, X1 be a Markov chain over state space {0, 1}n. In each
step, pick a random position i ∈ [n] and set Xt(i) = 0 with
probability 1/2 and Xt(i) = 1 with probability 1/2.

What is a coupling (X0, Y0), (X1, Y1), . . . on this chain that we
can use to bound the mixing time of this walk?
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Coupling Example: Random Walk on a Hypercube

In each step, pick a single random position i ∈ [n] and let
Xt(i) = Yt(i) = 0 with probability 1/2 and Xt(i) = Yt(i) = 1 with
probability 1/2.

How large must we set t so that Pr[Xt ̸= Yt] ≤ ϵ?

Upshot: The mixing time of the n-dimensional hypercube is
τ(ϵ) = O(n log(n/ϵ)).
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo

Many applications in computational biology, machine learning,
theoretical computer science, etc. require sampling from complex
distributions, which are difficult to write down in closed form, and
difficult to directly sample from.

A very common approach is to design a Markov chain whose
stationary distribution π is equal to the distribution of interest.

By running this Markov chain for at least τ(ϵ) steps (burn-in time),
one can draw a sample which is nearly from the distribution of
interest.

Note: A major focus is on designing and analyzing Markov chains
where τ(ϵ) is small. For today, we’ll just focus on getting the
stationary distribution right, and mostly ignore runtime.
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Sampling Independent Sets

Suppose we would like to sample a uniformly random
independent set from a graph G.

Very non-obvious how to sample from this distribution. Exactly
counting the number of independent sets, which is closely
related to sampling, is #P-hard.
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Markov Chain on Independent Sets

Design a Markov chain X0, X1, . . . whose states are exactly the
independent sets. E.g., let Xt+1 be chosen uniformly at random from
N (Xt) = {Y : independent set formed by adding/removing a node from Xt}.

Unfortunately, the stationary distribution of this chain may not be
uniform. It places higher probability on independent sets with lots
of neighboring independent sets.
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Achieving a Uniform Stationary Distribution

Define a Markov chain X0, X1, . . . over independent sets with
transition function:

• Pick a random vertex v.
• If v ∈ Xt, set Xt+1 = Xt \ {v}.
• If v /∈ Xt and Xt ∪ {v} is independent, set Xt+1 = Xt ∪ {v}.
• Else set Xt+1 = Xt.

Is this chain irreducible and aperiodic? Yes.

For any two independent sets i, j, what is Pi,j? Pi,j = Pj,i = 1/|V|
if i, j differ by one vertex, Pi,j = Pj,i = 0 otherwise.

Thus, the Markov chain is symmetric, so by our claim from last
class, the stationary distribution is uniform.
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Achieving a Non-Uniform Stationary Distribution

Suppose we want to sample an independent set X from our
graph with probability:

π(X) = λ|X|∑
Y independent λ

|Y| ,

for some ‘fugacity’ parameter λ > 0.

Known as the ‘hard-core model’ in statistical physics.
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Metropolis-Hastings Algorithm

A very generic way of designing a Markov chain over state space [m]

with stationary distribution π ∈ [0, 1]m.

• Assume the ability to efficiently compute a density p(X) ∝ π(X).

• Assume access to some symmetric transition function with
transition probability matrix Q ∈ [0, 1]m×m.

• At step t, generate a ‘candidate’ state Xt+1 from Xt according to Q.

• With probability min
(
1, p(Xt+1)p(Xt)

)
, ‘accept’ the candidate. Else

‘reject’ the candidate, setting Xt+1 = Xt.
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Metropolis-Hastings Intuition
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Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, πP = π.

Suffices to show that pP = p where p(i) ∝ π(i) is our efficiently
computable density.

[pP](i) =
∑
j

p(j) · Qj,i ·min
(
1, p(i)p(j)

)
︸ ︷︷ ︸

aceptances

+p(i) ·
∑
j

Qi,j
(
1−min

(
1, p(j)p(i)

))
︸ ︷︷ ︸

rejections

=
∑
j

Qi,j ·min (p(j),p(i)) + p(i) ·
∑
j

Qi,j −
∑
j

Qi,j ·min(p(i),p(j))

= p(i) ·
∑
j

Qi,j = p(i).
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Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
π(X) = λ|X|∑

Y independent λ
|Y| .

• Let p(X) = λ|X| and let the transition function Q be given by:
• Pick a random vertex v.
• If v ∈ Xt, set Xt+1 = Xt \ {v} with probability min(1, 1/λ).
• If v /∈ Xt and Xt ∪ {v} is independent, set Xt+1 = Xt ∪ {v}.
• Else set Xt+1 = Xt with probability min(1, λ).

• Need to accept the transition with probability min
(
1, p(Xt+1)p(Xt)

)
.

The key challenge then becomes to analyze the mixing time.

For the related Glauber dynamics, Luby and Vigoda showed that for
graphs with maximum degree ∆, when λ < 2

∆−2 , the mixing time is
O(n logn). But when λ > c

∆ for large enough constant c, it is NP-hard
to approximately sample from the hard-core model.
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Counting to Sampling Reductions

Often if one can efficiently sample from the distribution
π(X) = p(X)∑

Y p(Y)
, one can efficiently approximate the normalizing

constant Z =
∑

Y p(Y) (often called the partition function).

• If Z is hard to approximate, then this can give a proof that
sampling is hard, and thus it is unlikely that any simple MCMC
method for sampling from π mixes rapidly.

• This is e.g., how one can show that sampling from the hard-core
model is hard when λ = Ω(1/∆).

• Let’s consider the simple case of λ = 1. I.e., we want to sample a
uniformly random independent set.

• In this case, Z = |S(G)|, the number of independent sets in G. It
is known that approximating |S(G)| even up to a poly(n) factor
is NP-Hard.
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Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let G0,G1, . . . ,Gm be a sequence of graphs with Gm = G and Gi
obtained by removing an arbitrary edge from Gi+1.

We can write:

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|. 21



Counting Independent Sets

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|2n = 2n ·Πmi=1ri,

where ri = |S(Gm)|
|S(Gm−i)|

. If we can estimate each ri with r̃i satisfying(
1− ϵ

2m

)
· ri ≤ r̃i ≤

(
1+ ϵ

2m

)
· ri,

then:

(1− ϵ) · |S(G)| ≤ 2n · Πmi=1r̃i ≤ (1+ ϵ) · |S(G)|

since
(
1+ ϵ

2m
)m ≤ 1+ ϵ and

(
1− ϵ

2m
)m ≥ 1− ϵ.
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Independent Set Ratios

Consider the ratio ri = |S(Gi)|
|S(Gi−1)|

. Observe that ri ≤ 1.

Further, ri ≥ 1/2. Let (u, v) be the edge removed from Gi to obtain
Gi−1. Then each independent set in S(Gi−1) \ S(Gi), must contain both
u and v.

So, we can map each set in S(Gi−1) \ S(Gi) to a unique set in S(Gi) by
simply removing v.

ri =
|S(Gi)|
|S(Gi−1)|

=
|S(Gi)|

|S(Gi)|+ |S(Gi−1) \ S(Gi)|
≥ 1
2 .
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Independent Set Ratios

So Far: We have written |S(G)| = 2n · Πmi=1ri where ri =
|S(Gi)|

|S(Gi−1)|
.

Need to get a 1± ϵ/m estimate to each ri to get a 1± ϵ estimate
to |S(G)|.

Let X be a random variable generated as follows: pick a
random independent set from Gi−1 and let X = 1 if the set is
also independent in Gi. Otherwise let X = 0.

What is E[X]?

How many samples of X do we need to take to obtain a 1± ϵ/m
approximation to ri with high probability?
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Counting Independent Sets

Upshot: For a graph G with m edges, making Õ(m2/ϵ2) calls to
a uniform random independent set sampler on G or its
subgraphs suffices to approximate the number of independent
sets in G up to 1± ϵ relative error.

• So a polynomial time algorithm for uniform random
independent set sampling, would lead to a polynomial
time algorithm for counting independent sets, and hence
the collapse of NP to P.

• Observe that near-uniform sampling (as would be
obtained e.g., with an MCMC method) would also suffice.
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