COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2022. Lecture 10

Logistics

- Problem Set 3 is due this Friday 4/15 at 8pm.
- We have no class next Wednesday it's a Monday at UMass.
- I will post a quiz due Tuesday 4/26 at 8pm.
- Remember that office hours are now Thursday at 4pm.

Summary

Last Week: Markov Chains.

- Finish spectral graph sparsification and physical interpretation
- Start on Markov chains and their analysis
- Markov chain based algorithms for satisfiability: $\approx n^2$ time for 2-SAT, and $\approx (4/3)^n$ for 3-SAT.

Summary

Last Week: Markov Chains.

- · Finish spectral graph sparsification and physical interpretation
- Start on Markov chains and their analysis
- Markov chain based algorithms for satisfiability: $\approx n^2$ time for 2-SAT, and $\approx (4/3)^n$ for 3-SAT.

Today: Markov Chains Continued

- The gambler's ruin problem.
- · Aperiodicity and stationary distribution of a Markov chain.
- · Mixing time and its analysis via coupling.
 - Markov Chain Monte Carlo (MCMC) methods.

Consider a matrix $A \in \mathbb{R}^{5\times 3}$ such that x=[0,2,2,1,1] is in the column span of A. $5\bigcap_{A}^{3} (C) = \bigcap_{A}^{3} (C)$

What can we say about the leverage score of the second row of A, i.e., au_2 ?

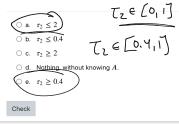
Question 3

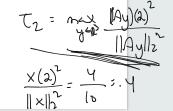
Not complete

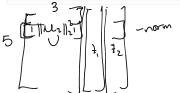
Points out of 1.00

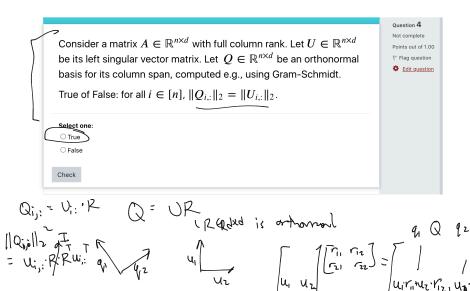
Flag question

Edit question









 $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$

Let E_0,E_1,\ldots be independent, identically distributed random variables. Which of the following are Markov chains? Select all that apply.

Question 5
Not complete
Points out of 1.00
Flag question
Edit question

a.
$$X_0, X_1, \dots$$
 where $X_0 = E_0$ and $X_{i+1} = X_i + E_i$
b. E_0, E_1, \dots themselves.

c. X_0, X_1, \dots where $X_0 = E_0$ and $X_{i+1} = X_i \cdot E_i$
d. X_0, X_1, \dots where $X_0 = E_0$, and $X_{i+1} = X_i + E_{i-1} + E_i$
e. X_0, X_1, \dots where $X_0 = E_0, X_1 = E_1$, and $X_{i+1} = X_i + X_{i-1} + E_i$

Check

$$- X_{0} = E_{0}$$
 $- X_{1} = E_{0} + E_{1} + E_{0}$
 $- X_{1} = X_{1} + E_{1} + E_{0}$
 $- X_{1} = X_{0} + X_{1} + E_{0}$

Markov Chain Review

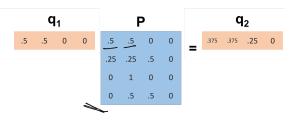
 A discrete time stochastic process is a Markov chain if is it memoryless:

$$\Pr(\mathbf{X}_{t} = a_{t} | \mathbf{X}_{t-1} = a_{t-1}, \dots, \mathbf{X}_{0} = a_{0}) = \Pr(\mathbf{X}_{t} = a_{t} | \mathbf{X}_{t-1} = a_{t-1})$$

• If each X_t can take m possible values, the Markov chain is specified by the transition matrix $P \in [0,1]^{m \times m}$ with

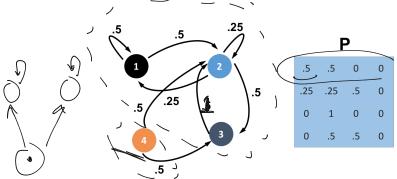
$$P_{i,j} = \Pr(\mathbf{X}_{t+1} = j | \mathbf{X}_t = i).$$

• Let $q_t \in [0,1]^{1 \times m}$ be the distribution of X_t . Then $q_{t+1} = q_t P$.



Markov Chain Review

Often viewed as an underlying state transition graph. Nodes correspond to possible values that each \mathbf{X}_t can take.



The Markov chain is <u>irreducible</u> if the underlying graph consists of single strongly connected component.

Gambler's Ruin

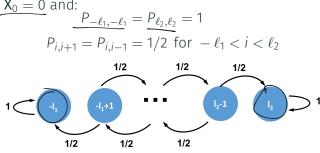
Gambler's Ruin

- You and 'a friend' repeatedly toss a fair coin. If it hits heads, you give your friend \$1. If it hits tails, they give you \$1.
- You start with $\$\ell_1$ and your friend starts with $\$\ell_2$ When either of you runs out of money the game terminates.

What is the probability that you win $\$\ell_2$?

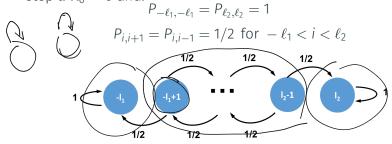
Gambler's Ruin Markov Chain

Let $X_0, X_1, ...$ be the Markov chain where X_t is your profit at step t. $X_0 = 0$ and:



Gambler's Ruin Markov Chain

Let $X_0, X_1,...$ be the Markov chain where X_t is your profit at step t. $X_0 = 0$ and:



- ℓ_1 and ℓ_2 are absorbing states.
- All i with $-\ell_1 < i < \ell_2$ are transient states. I.e., $\Pr[\mathbf{X}_{t'} = i \text{ for some } t' > t \, | \, \mathbf{X}_t = i] < 1.$

Gambler's Ruin Markov Chain

Let $X_0, X_1,...$ be the Markov chain where X_t is your profit at step t. $X_0 = 0$ and:

$$P_{-\ell_1,-\ell_1} = P_{\ell_2,\ell_2} = 1$$

$$P_{i,i+1} = P_{i,i-1} = 1/2 \text{ for } -\ell_1 < i < \ell_2$$

$$1/2$$

$$1/2$$

$$1/2$$

$$1/2$$

$$1/2$$

$$1/2$$

- ℓ_1 and ℓ_2 are absorbing states.
- All i with $-\ell_1 < i < \ell_2$ are transient states. I.e., $\Pr[\mathbf{X}_{t'} = i \text{ for some } t' > t \, | \, \mathbf{X}_t = i] < 1$.

Observe that this Markov chain is also a Martingale since $\mathbb{E}[X_{t+1}|X_t] = X_t$.

Gambler's Ruin Analysis

Let X_0, X_1, \ldots be the Markov chain where X_t is your profit at step t. $X_0 = 0$ and:

$$P_{-\ell_1,-\ell_1} = P_{\ell_2,\ell_2} = 1$$

 $P_{i,i+1} = P_{i,i-1} = 1/2 \text{ for } -\ell_1 < i < \ell_2$

We want to compute $q = \underbrace{\lim_{t \to \infty} \Pr[X_t = \ell_2]}$.

Gambler's Ruin Analysis

Let X_0, X_1, \ldots be the Markov chain where X_t is your profit at step t. $X_0 = 0$ and:

$$P_{-\ell_1,-\ell_1} = P_{\ell_2,\ell_2} = 1$$

 $P_{i,i+1} = P_{i,i-1} = 1/2 \text{ for } -\ell_1 < i < \ell_2$

We want to compute $q = \lim_{t \to \infty} \Pr[X_t = \ell_2]$.

By linearity of expectation, for any i, $\mathbb{E}[X_i] = 0$. Further, for $q = \lim_{t \to \infty} \Pr[X_t = \ell_2]$, since $-\ell_1, \ell_2$ are the only non-transient states,

$$\lim_{t\to\infty} \Pr\left[X_t = i\int_{t\to\infty}^{z=0} \lim_{t\to\infty} \mathbb{E}[X_t] = \ell_2 q + -\ell_1(1-q) = 0.$$

$$\lim_{t\to\infty} \Pr(X_t = i\int_{t\to\infty}^{z=0} \mathbb{E}[X_t] = \ell_2 q + -\ell_1(1-q) = 0.$$

Gambler's Ruin Analysis

Let $X_0, X_1, ...$ be the Markov chain where X_t is your profit at step t. $X_0 = 0$ and:

$$P_{-\ell_1,-\ell_1} = P_{\ell_2,\ell_2} = 1$$

 $P_{i,i+1} = P_{i,i-1} = 1/2 \text{ for } -\ell_1 < i < \ell_2$

We want to compute $q = \lim_{t \to \infty} \Pr[X_t = \ell_2]$.

By linearity of expectation, for any i, $\mathbb{E}[X_i] = 0$. Further, for $q = \lim_{t \to \infty} \Pr[X_t = \ell_2]$, since $-\ell_1, \ell_2$ are the only non-transient states,

$$\lim_{t\to\infty}\mathbb{E}[X_t] = \underline{\ell_2q + -\ell_1(1-q)} = 0.$$
 Solving for q , we have $q = \frac{\ell_1}{\ell_1 + \ell_2}$.
$$q(\mathcal{L}, +Q_\mathcal{I}) = Q_\mathcal{I}$$

Gambler's Ruin Thought Exercise

What if you always walk away as soon as you win just \$1. Then what is your probability of winning, and what are your expected winnings?

$$\frac{\mathcal{Q}_{1}}{\mathcal{Q}_{1}+\mathcal{Q}_{2}} \qquad \qquad \left(\frac{\mathcal{Q}_{1}}{\mathcal{Q}_{1}+1}\right) \circ 1 + \left(-\frac{\mathcal{Q}_{1}}{\mathcal{Q}_{1}+1}\right) \circ -\mathcal{Q}_{1}$$

$$= \bigcirc$$

Stationary Distributions

Stationary Distribution

A stationary distribution of a Markov chain with transition matrix $P \in [0,1]^{m \times m}$ is a distribution $\pi \in [0,1]^m$ such that $\underline{\pi = \pi P}$.

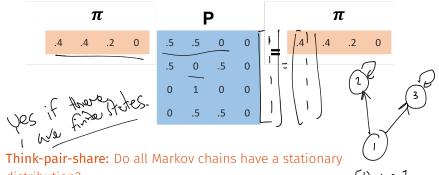
I.e. if $X_t \sim \pi$, then $X_{t+1} \sim \pi P = \pi$.

π				Р				π				
.4	.4	.2	0	.5	.5	0	0	_	.4	.4	.2	0
				.5	0	.5	0		_		<u> </u>	
				0	1	0	0					
				0	.5	.5	0					
				-			_					

Stationary Distribution

A stationary distribution of a Markov chain with transition matrix $P \in [0,1]^{m \times m}$ is a distribution $\pi \in [0,1]^m$ such that $\pi = \pi P$.

I.e. if $X_t \sim \pi$, then $X_{t+1} \sim \pi P = \pi$.



distribution?

Claim (Existence of Stationary Distribution)

Any Markov chain with a finite state space, and transition matrix $P \in [0,1]^{m \times m}$ has a stationary distribution $\pi \in [0,1]^m$ with $\pi = \pi P$.

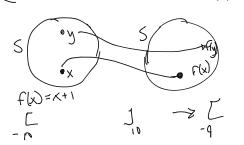
Peron-Floberius

Claim (Existence of Stationary Distribution)

Any Markov chain with a finite state space, and transition matrix $P \in [0,1]^{m \times m}$ has a stationary distribution $\pi \in [0,1]^m$

with
$$\pi = \pi P$$
.

Follows from the Brouwer fixed point theorem: for any continuous function $f: \mathcal{S} \to \mathcal{S}$, where \mathcal{S} is a compact convex set, there is some x such that f(x) = x.

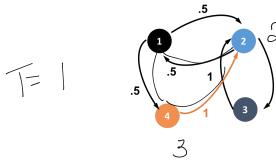


The periodicity of a state *i* is defined as:

$$T = \gcd\{\underline{t > 0} : \Pr(\underline{X_t = i} \mid \underline{X_0 = i}) > 0\}.$$

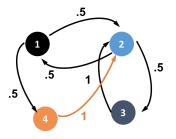
The periodicity of a state *i* is defined as:

$$T = \gcd\{t > 0 : \Pr(X_t = i \mid X_0 = i) > 0\}.$$



The periodicity of a state *i* is defined as:

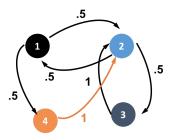
$$T = \gcd\{t > 0 : \Pr(X_t = i \mid X_0 = i) > 0\}.$$



The state is aperiodic if it has periodicity T = 1.

The periodicity of a state *i* is defined as:

$$T = \gcd\{t > 0 : \Pr(X_t = i \mid X_0 = i) > 0\}.$$

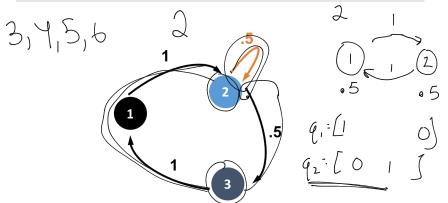


The state is aperiodic if it has periodicity T = 1.

A Markov chain is aperiodic if all states are aperiodic.

Claim

If a Markov chain is i<u>rreducible</u>, and has at least one self-loop, then it is a<u>periodic</u>.



Fundamental Theorem

Theorem (The Fundamental Theorem of Markov Chains)

Let X_0, X_1, \ldots be a Markov chain with a finite state space and transition matrix $P \in [0,1]^{m \times m}$. If the chain is both irreducible and aperiodic,

- 1. There exists a unique stationary distribution $\pi \in [0,1]^m$ with $\pi = \pi P$.
- 2. For any states i, j, $\lim_{t \to \infty} \Pr[X_t = i | X_0 = j] = \underline{\pi(i)}$. I.e., for any initial distribution q_0 , $\lim_{t \to \infty} q_t = \lim_{t \to \infty} q_0 P^t = \underline{\pi}$.
- 3. $\underline{\pi(i)} = \frac{1}{\mathbb{E}[\min(t:X_i=i)|X_0=i]}$. I.e., $\pi(i)$ is the inverse of the average expected return time from state i back to i.

Fundamental Theorem

Theorem (The Fundamental Theorem of Markov Chains)

Let X_0, X_1, \ldots be a Markov chain with a finite state space and transition matrix $P \in [0,1]^{m \times m}$. If the chain is both irreducible and aperiodic,

- 1. There exists a unique stationary distribution $\pi \in [0,1]^m$ with $\underline{\pi} = \pi P$.
- 2. For any states i, j, $\lim_{t\to\infty}\Pr[\mathbf{X}_t=i|X_0=j]=\pi(i)$. I.e., for any initial distribution q_0 , $\lim_{t\to\infty}q_t=\lim_{t\to\infty}q_0P^t=\pi$.
- 3. $\pi(i) = \frac{1}{\mathbb{E}[\min\{t: X_t = i\}|X_0 = i]}$. I.e., $\pi(i)$ is the inverse of the average expected return time from state i back to i.

In the limit, the probability of being at any state *i* is independent of the starting state.

Shuffling Markov Chain: Given a pack of *c* cards. At each step draw a random card, place it on top, and repeat.

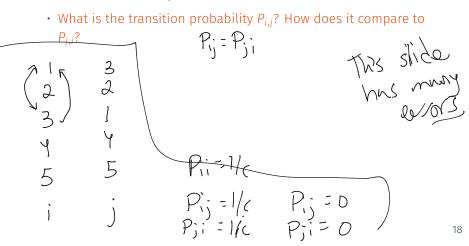
Shuffling Markov Chain: Given a pack of *c* cards. At each step draw a random card, place it on top, and repeat.

• What is the state space of this chain?

C! all possible permetations of clistiand

Shuffling Markov Chain: Given a pack of c cards. At each step draw frandom card splace it on top, and repeat. Swap have

· What is the state space of this chain? - all permutualism 1 cl



Shuffling Markov Chain: Given a pack of *c* cards. At each step draw a random card, place it on top, and repeat.

- · What is the state space of this chain?
- What is the transition probability $P_{i,j}$? How does it compare to $P_{j,i}$? $P_{i,j} = P_{j,i}$
- This Markov chain is symmetric and thus its stationary distribution is uniform, $\pi(i) = \frac{1}{c!}$.

Shuffling Markov Chain: Given a pack of *c* cards. At each step draw a random card, place it on top, and repeat.

- · What is the state space of this chain?
- What is the transition probability $P_{i,j}$? How does it compare to $P_{j,i}$?
- This Markov chain is symmetric and thus its stationary distribution is uniform, $\pi(i) = \frac{1}{c!}$.

Letting m = c! denote the size of the state space,

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i}$$

Shuffling Markov Chain: Given a pack of *c* cards. At each step draw a random card, place it on top, and repeat.

- · What is the state space of this chain?
- What is the transition probability $P_{i,j}$? How does it compare to $P_{j,i}$?
- This Markov chain is symmetric and thus its stationary distribution is uniform, $\pi(i) = \frac{1}{c!}$.

Letting m = c! denote the size of the state space,

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \pi(j) P_{i,j} \subseteq$$

Shuffling Markov Chain: Given a pack of *c* cards. At each step draw a random card, place it on top, and repeat.

- · What is the state space of this chain?
- What is the transition probability $P_{i,j}$? How does it compare to $P_{j,i}$?
- This Markov chain is symmetric and thus its stationary distribution is uniform, $\pi(i) = \frac{1}{c!}$.

Letting
$$m=c!$$
 denote the size of the state space,
$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \pi(j) P_{i,j} = \frac{1}{m} \sum_{j} P_{i,j}''$$

Shuffling Markov Chain: Given a pack of *c* cards. At each step draw a random card, place it on top, and repeat.

- · What is the state space of this chain?
- What is the transition probability $P_{i,j}$? How does it compare to $P_{j,i}$?
- This Markov chain is symmetric and thus its stationary distribution is uniform, $\pi(i) = \frac{1}{c!}$.

Letting m = c! denote the size of the state space,

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \pi(j) P_{i,j} = \frac{1}{m} \sum_{j} P_{i,j} = \frac{1}{m} = \pi(i).$$

Shuffling Markov Chain: Given a pack of *c* cards. At each step draw a random card, place it on top, and repeat.

- · What is the state space of this chain?
- What is the transition probability $P_{i,j}$? How does it compare to $P_{j,i}$?
- This Markov chain is symmetric and thus its stationary distribution is uniform, $\pi(i) = \frac{1}{c!}$.

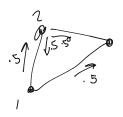
Letting m = c! denote the size of the state space,

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \pi(j) P_{i,j} = \frac{1}{m} \sum_{j} P_{i,j} = \frac{1}{m} = \pi(i).$$

Once we have exhibited a stationary distribution, we know that it is unique and that the chain converges to it in the limit!

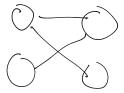
Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t+1 with probability $\frac{1}{d_i}$.

• What is the transition probability $P_{i,j}$?



Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t+1 with probability $\frac{1}{d_i}$.

- · What is the state space of this chain?
- What is the transition probability $P_{i,j}$?
- Is this chain aperiodic?



Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t+1 with probability $\frac{1}{d_i}$.

- · What is the state space of this chain?
- What is the transition probability $P_{i,j}$?
- Is this chain aperiodic?
- If the graph is not bipartite, then there is at least one odd cycle, making the chain aperiodic.

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t + 1 with probability $\frac{1}{d_i}$.

Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i) = \frac{d_i}{|E|}$.

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t+1 with probability $\frac{1}{d}$.

Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i) = \frac{d_i}{2^{|E|}}$. $\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i}$

$$\pi P_{:,i} = \sum_{j} \frac{\frac{d}{d|F|}}{\pi(j)} P_{j,i}$$

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t+1 with probability $\frac{1}{d_i}$.

Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i) = \frac{d_i}{2|E|}$.

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j \in N(i)} \frac{\partial_{N}}{\partial j} \cdot \frac{1}{\partial j} = \sum_{j} \frac{1}{2|E|} = \frac{1}{2|E|}$$

$$\frac{1}{2|E|} \cdot f \in N(i)$$

$$0 \text{ if } j \notin N(i)$$

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t+1 with probability $\frac{1}{d_i}$.

Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i) = \frac{d_i}{|E|}$.

$$\pi P_{:,j} = \sum_{j} \pi(j) P_{j,j} = \sum_{j} \frac{d_{j}}{|E|} \cdot \frac{1}{d_{j}} = \sum_{j} \frac{1}{|E|}$$

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t + 1 with probability $\frac{1}{d_i}$.

Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i) = \frac{d_i}{|E|}$.

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \frac{d_j}{|E|} \cdot \frac{1}{d_j} = \sum_{j} \frac{1}{|E|} = \frac{d_i}{|E|} = \pi(i).$$

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i's neighbors at step t + 1 with probability $\frac{1}{d_i}$.

Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i) = \frac{d_i}{|E|}$.

$$\underline{\pi P_{:,i}} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \frac{d_j}{|E|} \cdot \frac{1}{d_j} = \sum_{j} \frac{1}{|E|} = \frac{d_i}{|E|} = \pi(i).$$

I.e., the probability of being at a given node *i* is dependent only on the node's degree, not on the structure of the graph in any other way.

Total Variation Distance

[wassenttein]

Definition (Total Variation (TV) Distance)

For two distributions $p, q \in [0, 1]^m$ over state space [m], the total variation distance is given by:

$$\|p - q\|_{\text{TV}} = \frac{1}{2} \sum_{i \in [m]} |p(i) - q(i)| = \max_{A \subseteq [m]} |p(A) - q(A)|.$$

$$\begin{cases} \frac{1}{b} \\ \frac{1}{b} \\ \frac{1}{b} \end{cases} \qquad \begin{cases} \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} \end{cases} - \frac{1}{b} - \frac{1}{b} = \frac{2}{3} \end{cases}$$

$$\frac{1}{2} \left(Y \cdot \left(\frac{1}{b} \right) + 2 \cdot \left(\frac{1}{2} - \frac{1}{b} \right) \right) = \frac{2}{3}$$

Total Variation Distance

Definition (Total Variation (TV) Distance)

For two distributions $p, q \in [0, 1]^m$ over state space [m], the total variation distance is given by:

$$||p-q||_{TV} = \frac{1}{2} \sum_{i \in [m]} |p(i)-q(i)| = \max_{A \subseteq [m]} |p(A)-q(A)|.$$

Mixing Time

Definition (Mixing Time)

Consider a Markov chain X_0, X_1, \ldots with unique stationary distribution π . Let $q_{i,t}$ be the distribution over states at time t assuming $X_0 = i$. The mixing time is defined as:

$$\underline{\tau(\epsilon)} = \min \left\{ \underline{t : \max_{i \in [m]} \|q_{i,t} - \pi\|_{\text{TV}}} \le \epsilon \right\}.$$

Mixing Time

Definition (Mixing Time)

Consider a Markov chain X_0, X_1, \ldots with unique stationary distribution π . Let $q_{i,t}$ be the distribution over states at time t assuming $X_0 = i$. The mixing time is defined as:

$$\tau(\epsilon) = \min \left\{ t : \max_{i \in [m]} \|q_{i,t} - \pi\|_{\text{TV}} \le \epsilon \right\}.$$

I.e., what is the maximum time it takes the Markov chain to converge to within ϵ in TV distance of the stationary distribution?

Mixing Time

Definition (Mixing Time)

Consider a Markov chain X_0, X_1, \dots with unique stationary distribution π . Let $q_{i,t}$ be the distribution over states at time t assuming $X_0 = i$. The mixing time is defined as:

$$\tau(\underline{\epsilon}) = \min \left\{ \underline{t} : \max_{i \in [m]} \|q_{i,t} - \pi\|_{\text{TV}} \leq \underline{\epsilon} \right\}.$$

I.e., what is the maximum time it takes the Markov chain to converge to within ϵ in TV distance of the stationary distribution?

Claim: If
$$X_0, X_1, ...$$
 is finite, irreducible, and aperiodic, then $\underline{\tau}(\epsilon) \leq \tau(1/2) \cdot c \log(1/\epsilon)$ for large enough constant c .

Claim:
$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}.$$

Claim:
$$\max_{i \in [m]} \underbrace{\|q_{i,t} - \pi\|_{\text{TV}}} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{\text{TV}}.$$
$$\|q_{i,t} - \pi\|_{\text{TV}} = \|q_{i,t} - \pi P^t\|_{\text{TV}}$$

i) Starting ater of notion dring

Claim:
$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}.$$

$$\|q_{i,t} - \pi\|_{TV} = \|q_{i,t} - \pi P^t\|_{TV} \qquad \text{Yit}$$

$$= \|q_{i,t} - \sum_j \pi(j)e_j P^t\|_{TV}$$

$$\text{T= T(j) e_j} \qquad \text{ej=} \{0 \text{ or } 0\}$$

Claim:
$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}.$$

$$\|\underline{q_{i,t} - \pi}\|_{TV} = \|q_{i,t} - \pi P^t\|_{TV}$$

$$= \|q_{i,t} - \sum_{j} \pi(j) e_j P^t\|_{TV}$$

$$= \|\underline{q_{i,t}} - \sum_{j} \underline{\pi(j)} q_{j,t}\|_{TV}$$

$$= \|\underline{q_{i,t}} - \sum_{j} \underline{\pi(j)} q_{j,t}\|_{TV}$$

$$\begin{aligned} \text{Claim: max}_{i \in [m]} & \| q_{i,t} - \pi \|_{\text{TV}} \leq \max_{i,j \in [m]} \| q_{i,t} - q_{j,t} \|_{\text{TV}}. \\ & \| q_{i,t} - \pi \|_{\text{TV}} = \| q_{i,t} - \pi P^t \|_{\text{TV}} \\ & = \| q_{i,t} - \sum_j \pi(j) e_j P^t \|_{\text{TV}} \\ & = \| q_{i,t} - \sum_j \pi(j) q_{j,t} \|_{\text{TV}} \\ & \leq \sum_j \| \pi(j) q_{i,t} - \pi(j) q_{j,t} \|_{\text{TV}} \end{aligned}$$

Claim:
$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}.$$

$$\|q_{i,t} - \pi\|_{TV} = \|q_{i,t} - \pi P^t\|_{TV}$$

$$= \|q_{i,t} - \sum_j \pi(j) e_j P^t\|_{TV}$$

$$= \|q_{i,t} - \sum_j \pi(j) q_{j,t}\|_{TV}$$

$$\le \sum_j \|\pi(j) q_{i,t} - \pi(j) q_{j,t}\|_{TV} = \sum_j \prod_{j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}.$$

Claim:
$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}$$
.

Coupling: A common technique for bounding the mixing time by showing that $\max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}$ is small.