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- Problem Set 3 is due this Friday 4/15 at 8pm.

- We have no class next Wednesday - it's a Monday at
UMass.

- | will post a quiz due Tuesday 4/26 at 8pm.

- Remember that office hours are now Thursday at 4pm.



Last Week: Markov Chains.
- Finish spectral graph sparsification and physical interpretation

- Start on Markov chains and their analysis

- Markov chain based algorithms for satisfiability: ~ n? time for
2-SAT, and ~ (4/3)" for 3-5AT. 3%



Last Week: Markov Chains.

- Finish spectral graph sparsification and physical interpretation
- Start on Markov chains and their analysis
- Markov chain based algorithms for satisfiability: ~ n? time for

2-SAT, and = (4/3)" for 3-SAT.

Today: Markov Chains Continued

- The gambler’s ruin problem.
- Aperiodicity and stationary distribution of a Markov chain.
- Mixing time and its analysis via coupling.

@kov Chain Monte Carlo (MCMC) methods.



Question 3

Consider a matrix A € R332 such that x = [0,2,2,1,1]isinthe

column span of A. 5
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What can we say about the leverage $c¢ore of the second row of A,

ie., m?
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Question 4

Not complete

Consider a matrix A € R with full column rank. Let U € R"™*4 Points out of 100

be its left singular vector matrix. Let Q € R™ be an orthonormal ¥ FEY R
. . . . £ Edit question

basis for its column span, computed e.g., using Gram-Schmidt. et

True of False: foralli € [n], [|Q;:|l2 = |Ui:ll2-
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Let Ey, E1, ... be independent, identically distributed random
variables. Which of the following are Markov chains? Select all that
apply.

. Xo, X1, ... where Xy = Epand X;y) = X; + E;
S

. Ey, Ej, ... themselves.

. X0,X),...where Xy = Eyand X;, | = X, - E; . = »(‘
P’-(X\‘H_ \ )
. \Xo, X,... where Xy = Ep,and X;3| = X; + E;_| + E;

__/s
. X0, X1,...where Xo = Ep, X; = Ej,and X4y = X; + Xio) + E; v, 2 \
0, X1 0 0, X1 1 +1 i 1 j: ’Pf()(lﬂ \I

Check Xi , )Q-\)

Question 5

Not complete
Points out of 1.00
¥ Flag question

% Edit question



Markov Chain Review

- A discrete time stochastic process is a Markov chain if is it
memoryless:

Pr(X; = a¢|Xe—1 = A1, ..., X0 = Qo) = Pr(X; = a¢|Xi—1 = a1_1)

—
- If each X; can take m possible values, the Markov chain is

specified by the transition matrix P € [0, 1]™*™ with

Pi; = Pr(Xepr = JIXe = ).

.~

- Let g; € [0,1]"™ be the distribution of X. Then g1 = g¢P.
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Markov Chain Review

Often viewed as an underlying state transition graph. Nodes
correspond to possible values that each X; can take.

J ~

The Markov chain is_irredicible if the underlying graph consists of
single strongly connected component.




Gambler’s Ruin



Gambler's Ruin

- You and ‘a friend’ repeatedly toss a fair coin. If it hits heads, you
give your friend $1. If it hits tails, they give you $1.

- You start witand your friend starts wit When either of
you runs out of money the game terminate

~@at is the probability that you win $4,?



Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at

step t. Xo = 0 and:
- Pt~y =Prp, =1

P,',,'+1 = P;J,q = 1/2 for —t1<i< ¥,
1/
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Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at

step t. Xo = 0 and:
P_ti—ey = Pop, =1

Q* g Piip1=Piioa=1/2for —hh<i<hb

- ¢y and ¢, are absorbing states.
< All i with —¢4 < | < ¢; are transient states. l.e,

PriXy = iforsomet >t|X;=1i] <1.
_——



Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at

step t. Xo = 0 and:
P_ti—ey = Pop, =1

P,',,'+1 = :D,'J,q = 1/2 for —t1<i< ¥,
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- ¢y and ¢, are absorbing states.
< All i with —¢4 < | < ¢; are transient states. l.e,
PriXy = iforsomet >t|X;=1i] <1.

Observe that this Markov chain is also a Martingale since
E[Xes1|Xed] = Xe.



Gambler’s Ruin Analysis

Let Xg, X4, ... be the Markov chain where X; is your profit at step t.
Xo = 0 and:
Pti,—e, =P, =1
Piiv1=Pijiia=1/2 for =ty <i< b,

We want to compute g = lim;_, o Pr[X; = £3].
,\
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Gambler’s Ruin Analysis

Let Xg, X4, ... be the Markov chain where X; is your profit at step t.
Xo = 0 and:
Pti,—e, =P, =1

Pi,i+1:Pi,if1:’|/2 for —£1<i<€2 E[X;{: O
We want to compute g = lim;_, o Pr[X; = £3].

By linearity of expectation, for any i, E[X;] = 0. Further, for
g = limi— o Pr[Xe = 4], since —¢4, ¢, are the only non-transient states,
I\ prg: '\&30 lim E[X] = 9+ —6:(1—q) = 0.
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Gambler’s Ruin Analysis

Let Xg, X4, ... be the Markov chain where X; is your profit at step t.
Xo = 0 and:
Pti,—e, =P, =1
Piiv1=Pijiia=1/2 for =ty <i< b,

We want to compute g = lim;_, o Pr[X; = £3].

By linearity of expectation, for any i, E[X;] = 0. Further, for
g = limi— 0 Pr[Xe = £,], since —¢4, ¢, are the only non-transient states,

tim E[X] = WO.
C,/Ql *Q, U“@)
q (L 100) < 0,

4
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Solving for g, we have g =

1



Gambler’'s Ruin Thought Exercise

What if you always walk away as soon as you win just $1. Then
what is your probability of winning, and what are your
expected winnings?
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Stationary Distributions



Stationary Distribution

A stationary distribution of a Markov chain with transition matrix
P € [0,1]™*™ is a distribution 7 € [0,1]™ such that = = 7P.
TTe———
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lLe. if X; ~ m, then Xepq ~ 7P = .
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Stationary Distribution

A stationary distribution of a Markov chain with transition matrix
P € [0,1]™*™ is a distribution 7 € [0,1]™ such that = = 7P.

lLe. if X; ~ m, then Xepq ~ 7P = .

0
N T o0 5.
A
Think-pair-share: Do all Markov chains have a stationary

distribution? V) 0
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Claim (Existence of Stationary Distribution)

Any Markov chain with a finite state space, and transition
matrix P € [0,1]"*™ has a stationary distribution = € [0,1]™
with m = wP.

14



P = Peton G5

-\\_‘_,'\)(-\U\)V
Claim (Existence of Stationary Distribution)
Any Markov chain with a finite state space, and transition
matrix P € [0,1]"*™ has a stationary distribution = € [0,1]™

0 _ ) . )
Wlt@ ({/? 4 PiSwsS 5 itk
Follows from the Brouwer fixed point theorem: for any MES';‘ZT@&

continuous function f: § — §, where S is a compact convex
set, there is some x such that f(x) = x.
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Periodicity

The periodicity of a state i is defined as:

T=gcd{t>0:Pr(X¢=1|Xo=1)>0}.

~—
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Periodicity

The periodicity of a state i is defined as:

T=gcd{t>0:Pr(Xe=1i|Xo=1i)>0}.

/'5\‘9\
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Periodicity

The periodicity of a state i is defined as:

T=gcd{t>0:Pr(Xe=1i|Xo=1i)>0}.

@state is aperiodic if it has periodicity T = 1.

15



Periodicity

The periodicity of a state i is defined as:

T=gcd{t>0:Pr(Xe=1i|Xo=1i)>0}.

The state is aperiodic if it has periodicity T = 1.
A Markov chain is aperiodic if all states are aperiodic.

15



Periodicity

Claim
If a Markov chain is irreducible, and has at least one
self-loop, then it is aperiodic.

16



Fundamental Theorem

Theorem (The Fundamental Theorem of Markov Chains)

Let Xo, X4, ... be a Markov chain with a finite state space and

transition matrix P € [0,1]™*™. [f the chain is both irreducible and
. . -

aperiodic,

<

1. There exists a unique stationary distribution = € [0,1]™ with
T = mP.

2. For any states i,j, lim¢_ Pr{X; = i|Xo = j] = (i). l.e, for any
initial distribution qo, liMi— 00 Gt = iMoo qopf =T

3. 7(1) = s tXt =T ) is the inverse of the average
expected return time from state I back to i.

17



Fundamental Theorem

Theorem (The Fundamental Theorem of Markov Chains)

Let Xo, X4, ... be a Markov chain with a finite state space and
transition matrix P € [0,1]"*™. If the chain is both irreducible and

aperiodic, 220,
) i,ﬂ[\\
1. There exists a unique stationary distribution = € [0,1]™ with
T = mP.
—_— =

2. For any states i,j, limi_o Pr[X; = i|Xo = j] = = (i). l.e, for any
initial distribution qo, liM¢_e G¢ = liM;_s00 GoP* = .

3. (i) = m{txj—:/m l.e, w(i) is the inverse of the average
expected return”time from state i back to |.

In the limit, the probability of being at any state i is independent of
the starting state.

17



Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw a
random card, place it on top, and repeat.

18



Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw a
random card, place it on top, and repeat.

- What is the state space of this chain?

cl a Poss\\gv fo/vm‘ralf\bm o+ ¢ (fo)-j
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw @wo
random card&pﬁwmﬁﬁﬁ%&fajea‘t NINAY
S\N"F A ‘\\U '\'DF G2

- What is the state space of this chain? ~

-+ What is the transition probability P;;? How does it compare to




Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw a
random card, place it on top, and repeat.

- What is the state space of this chain?
-+ What is the transition probability P;;? How does it compare to
.? - N
Pj./' -P|.) 2 ?)‘
- This Markov chain is symmetric and thus its stationary

distribution is uniform, m(i) = .
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw a
random card, place it on top, and repeat.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;i?

- This Markov chain is symmetric and thus its stationary

distribution is uniform, m(i) = .

Letting m = c! denote the size of the state space,
P = ZWU)PJ,I'

C H] <[ wa)]
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw a
random card, place it on top, and repeat.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;i?

- This Markov chain is symmetric and thus its stationary
distribution is uniform, m(i) = .
Letting m = c! denote the size of the state space,

wPy =Y _w()Pi=>_ w()P; =

j j
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw a
random card, place it on top, and repeat.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;i?

- This Markov chain is symmetric and thus its stationary
distribution is uniform, m(i) = . el
Letting m = c! denote the size of the state space, |

/,
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NEPN

j j

18



Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw a
random card, place it on top, and repeat.

- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;i?
- This Markov chain is symmetric and thus its stationary

distribution is uniform, m(i) = .

Letting m = c! denote the size of the state space,

. . 1 1 .
/7TP:,/ =Y 7()Pi =D _w()Piy = - > Pi= - =m(i).
' j J
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw a
random card, place it on top, and repeat.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P.?
- This Markov chain is symmetric and thus its stationary
distribution is uniform, m(i) = .
Letting m = c! denote the size of the state space,
. . 1 1 .
P = ZW(J)PJ,I' = ZW(J)P«'J = Z Pij=— = (i)
J J J
Once we have exhibited a stationary distribution, we know that it is
unique and that the chain converges to it in the limit!
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node i at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/_.

( - What is the state space of this chain? \/

- What is the transition probability P;;?
g |

—_—

d
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node i at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/_.

- What is the state space of this chain?
- What is the transition probability P;;?

- Is this chain aperiodic?

Q
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node i at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/_.

- What is the state space of this chain?

- What is the transition probability P;;?

- Is this chain aperiodic?

- If the graph is not bipartite, then there is at least one odd
cycle, making the chain aperiodic.

19



Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = |d—'|.

20



Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by 7 (/) :O,Ud—".

4 [
AT e
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary
distribution of this Markov chain is given by 7 (/) :afﬁ-

7TP;7,‘— jl XTQJE\ \% ?éll]:l ) &E

Te0)
dT \P)' €N
O €N
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random

walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,
Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = |d—"|.

. d 1 1
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary
distribution of this Markov chain is given\py %.

. di 1 1 d; _
= w()Pi= 2= = =),

J
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = d—é" .

. d 1 1 d; .
wP.; = T(J)Pji = ne— — = —L = 7(i).
— Zj: V)Fii Zj:lE d; ;|E| |E| )
l.e., the probability of being at a given node i is dependent
only on the node’s degree, not on the structure of the graph in

any other way.
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Mixing Times



Total Variation Distance

Definition (Total Variation (TV) Distance)
For two distributions p, g € [0, 1]™ over state space [m], the total
variation distance is given by:

Ip = qllv = 2Z|p ()l = max |p(A) - g(A)!
ie[m] —
P
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Total Variation Distance

Definition (Total Variation (TV) Distance)

For two distributions p, g € [0, 1]™ over state space [m], the total
variation distance is given by:

Ip = qllv = ZID (i)l = max [p(A) — q(A)].

»e[m]

AC[m]

Kontorovich-Rubinstein duality: Let P, Q be possibility correlated
random variables with marginal distributions p,g. Then

PG 3 llp-ghv-o B z



Mixing Time

Definition (Mixing Time)

Consider a Markov chain Xg, X4, ... with unique stationary
distribution 7. Let g;; be the distribution over states at time t
assuming Xo = i. The mixing time is defined as:

7(e) = min { t:max||gi: — 7|l < e}.
ie[m] = ~==
_——
@%— A \Dl} . “5

O
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Definition (Mixing Time)

Consider a Markov chain Xg, X4, ... with unique stationary
distribution 7. Let g;; be the distribution over states at time t
assuming Xo = i. The mixing time is defined as:

7(e) = min {t :max ||gi s — 7|l < e} .
i€[m] ’

l.e., what is the maximum time it takes the Markov chain to converge
to within e in TV distance of the stationary distribution?

22



Definition (Mixing Time)

Consider a Markov chain Xg, X4, ... with unique stationary
distribution 7. Let g;; be the distribution over states at time t
assuming Xo = i. The mixing time is defined as:

~(e) = min {t: max lgi; — v <\5}.
= %

l.e., what is the maximum time it takes the Markov chain to converge
to within e in TV distance of the stationary distribution?

Claim: If Xg, X4, ... is finite, irreducible, and aperiodic, then
(e) < 7(1/2) - clog(1/e) for large enough constant c.
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G0 P %’L Sl Qot - TP+ o P 2

T



Coupling Motivation

Claim: maxicm [1Gic — 7llrv < Max;jeim 119i,c — Gje
—— — T s

Tv-
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Coupling Motivation

;1i Sjr”’“b‘?y
oot o

lGie — wllrv = llgie — 7Pl .
e Mo J/‘M\

Claim: maXieqm [19i,e — 7llrv < Maxijeqm 191 — Gjiellrv-
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Coupling Motivation

Claim: maxicm [1Gic — mllrv < MaX;jem [1Gic — Gjiellrv-

lgie — wllv = lgic — 7Py i
r\/\/‘

= llaic = > m()ePlirv
j
T 1)) e Qy—@o 100@
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Coupling Motivation

Claim: maxicm [1Gic — mllrv < MaX;jem [1Gic — Gjiellrv-

lGie — wllrv = llgie — 7Pl
= llqic = Y _ m()eP v
J

> 7()ajellrv

J
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Coupling Motivation

Claim: maxicm [1Gic — mllrv < MaX;jem [1Gic — Gjiellrv-

lGie — wllrv = llgie — 7Pl

= llqic = Y _ m()eP v
J

:HQit—Z (NG el
<Z:||7T Naie — 7()a e llv
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Coupling Motivation

Claim: maxicm [1Gic — mllrv < MaX;jem [1Gic — Gjiellrv-

lGie — wllrv = llgie — 7Pl
= llqic = Y _ m()eP v
J

=Gt — Zﬂ(j)QJ,t“TV

J
< S e - 7 216 gia-gish
J y —

< max||qi: — gjellv-
j€m]

-
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Coupling Motivation

Claim: maxicpm [19i,c — 7llrv < max;jegmy 1Gi: —

191 = 7llv = l|Gie — 7P|l
= llqic = > _ m()eP v
J
= [lgi¢ — Z (Najclirv
<Z:||7T Naie = 7().ellrv

< max||qi: — gjellv-
j€m]

Coupling: A common technique for bounding the mixing time by
showing that max; jegmy [1Gi,c — Gjell7v is small.
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