COMPSCI 690RA: Randomized Algorithms and
Probabilistic Data Analysis

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2022.
Lecture 1

Randomized algorithms take steps that depend on both their
inputs and on the outcomes of random coin flips. l.e, they are
algorithms that make random decisions during their execution.

P
W0 e

.

N/

This is sort of weird when you think about it - the algorithm
can't do anything better than just randomly guess?

In many settings randomized algorithms give big advantages over
deterministic ones:

- Can be much faster than the best known deterministic
algorithms (polynomial identity testing, approximation
algorithms, linear algebraic computation and data analysis)

- Often very simple and elegant (randomized quicksort, Karger's
min—cut algorithm)

- In many cases, by using random sampling and related ideas,
they can achieve things that are simply impossible for
deterministic algorithms (sublinear time algorithms, efficient
communication protocols, small-space streaming algorithms)

What We'll Cover

What We'll Cover

Section 1: Probability Foundations & Random Hashing

What We'll Cover

Section 1: Probability Foundations & Random Hashing

o N
l...: -
.‘|.’.‘s
‘\l. o
\e ©

- Review of probability tools and concentration inequalities, that
will be used throughout the course.

- Applications to the analysis of random hashing algorithms. E.g.,
analysis of chaining, linear probing, and cuckoo hashing.

- Hashing for efficient communication and lookup. Fingerprints,

attern matching, communication complexity.

-\ Streaming and distributed graph algorithms. ¢, sampling and

graph sketching.

What We'll Cover

Section 2: Random Sketching and Randomized Numerical
Linear Algebra (RandNLA)

random projection random sampling

|-

FI
!

What We'll Cover

Section 2: Random Sketching and Randomized Numerical
Linear Algebra (RandNLA)

random projection random sampling

- Sampling and sketching for approximate matrix multiplication,
low-rank approximation, and trace estimation.

. Lmensmnallty reduction. The Johnson-Lindenstrauss le@
subspace embedding, and sketching for linear regression.

J

/

| =
e
1

- Importance sampling and leverage scores. Connections to

maMst and spectral graph theory.

What We'll Cover

Section 3: Markov Chains and Other Topics

110011

000011

What We'll Cover

Section 3: Markov Chains and Other Topics

110011

THE
PROBABILISTIC
METHOD

- Introduction to Markov chains and basic tools for their analysis.

- Algorithms based on Markov chains: randomized methods for
2-SAT and 3-SAT, Markov Chain Monte Carlo methods (MCMC).

- Convex relaxation and randomized rounding for approximating
combinatorially hard problems.

- Mathematical proofs via randomized algorithms: the

probabilistic method and the Lovész@ma.

Style of the Course

This is a theory course.

Style of the Course

This is a theory course.

- Assignments will emphasize algorithm design, correctness
proofs, and asymptotic analysis (minimal coding).

Style of the Course

This is a theory course.

- Assignments will emphasize algorithm design, correctness
proofs, and asymptotic analysis (minimal coding).

- The homework will be challenging. You will design and analyze
algorithms using the tools taught in class, but the solutions will
require significant thought and novel ideas.

Style of the Course

This is a theory course.

- Assignments will emphasize algorithm design, correctness
proofs, and asymptotic analysis (minimal coding).

- The homework will be challenging. You will design and analyze
algorithms using the tools taught in class, but the solutions will
require significant thought and novel ideas.

- A strong algorithms and mathematical background are required
(particularly in linear algebra and probability).

- If you are an undergraduate or Master’s student | would not
recommend taking this course unless you have previously taken
either 514 or 611 and done very well - the course will be a
significant step up in difficulty from 514.

Who Should Take this Course?

- You are a Ph.D. student that wants to do research in
algorithms/theory.

- You are a Ph.D. student in another area that wants to
apply randomized algorithms or probabilistic analysis in
your work.

- You are an undergrad/Master’s student excited about
algorithms, who potentially wants to pursue a Ph.D.

- If you are unsure if you are prepared for the course, or if it
will fulfill your goals for taking it, shoot me an email or
Piazza message.

Course Logistics

See course webpage for logistics, policies, lecture notes,
assignments, etc.

http://people.cs.umass.edu/~cmusco/CS690RAS22/

Visit Moodle or my homepage for this link if you lose it.

Personnel

Professor: Cameron Musco

- Email: cmusco@cs.umass.edu

- Office Hours: Weds, 2pm-3pm (directly after class). CS 234
(directly upstairs). Starting next week.

- | encourage you to come as regularly as possible to ask
questions/work together on practice problems.

- If you need to chat individually, please email to set up a time.
TA: Weronika Nguyen

- Email: thuytrangngu@cs.umass.edu

- Office Hours: Mon, 3:30pm-4:30pm. CS 207.

Piazza and Participation

We will use Piazza for class discussion and questions.

- See website for link to sign up.

1

Piazza and Participation

We will use Piazza for class discussion and questions.
- See website for link to sign up.
You may earn up to 5% extra credit for participation.
- Asking good clarifying questions and answering questions

during the lecture or on Piazza.

- Answering other students’ or instructor questions on
Piazza.

- Posting helpful/interesting links on Piazza, e.g., resources
that cover class material, research articles related to the
topics covered in class, etc.

1

Textbooks and Materials

| will post optional readings and references for each class. A
lot of the content is covered in the following two textbooks
which may be helpful for reference:

- Probability and Computing, by Mitzenmacher and Upfal

- Randomized Algorithms, by Motwani and Raghavan

Lecture notes will be posted before each class, and annotated
notes posted after class. Recordings should be available via
Echo360 - may take a couple of classes to work out any kinks.

12

Homework

We will have 4 problem sets, which you may complete in
groups of up to 3 students.

13

Homework

We will have 4 problem sets, which you may complete in
groups of up to 3 students.

- We strongly encourage working in groups, as it will make
completing the problem sets much easier/more
educational.

- You should not simply split up the problem set and
complete different parts independently.

- Collaboration with students outside your group is limited
to discussion at a high level. You may not work through
problems in detail or write up solutions together.

- See Piazza for a thread to help you organize groups.

13

Homework

We will have 4 problem sets, which you may complete in
groups of up to 3 students.

- We strongly encourage working in groups, as it will make
completing the problem sets much easier/more
educational.

- You should not simply split up the problem set and
complete different parts independently.

- Collaboration with students outside your group is limited
to discussion at a high level. You may not work through
problems in detail or write up solutions together.

- See Piazza for a thread to help you organize groups.

Problem set submissions will be via Gradescope.

- See website for a link to join and entry code. -

Weekly Quizzes

| will release a multiple choice quiz in Moodle each Wednesday
after lecture, due the next Tuesday at 8pm.

14

Weekly Quizzes

| will release a multiple choice quiz in Moodle each Wednesday
after lecture, due the next Tuesday at 8pm.

- Designed as a check-in that you are following the material,
and to help me make adjustments as needed.

- Will take around 15-30 minutes per week, open notes.

- Will also include free response check-in questions to get
your feedback on how the course is going, what material
from the past week you find most confusing, interesting,
etc.

14

Grade Breakdown:

- Problem Sets (4 total): 40%, weighted equally.

- Weekly Quizzes: 10%, weighted equally, lowest score
dropped.

- Midterm (March 9th, in class): 20%.
- Final OR Final Project: 30%.

- Extra Credit: Up to 5% for participation, and lots more
available on problem sets, for questions asked in class,
etc.

15

Final project

Optionally, instead of taking the final exam, you can complete
a final project.

- Identify a topic of current research, formulate a research
problem, and ma%@an%to tackle that problem.

- Submit a 10 page final report.

- Completed in groups of two — if you would like to work
alone, please email the instructor to request permission.

- More details + deadlines will be posted shortly on the
course webpage.

- Much more work than if you just took the final, but
valuable if you are interested in doing research in the area.

16

Academic Honesty

- A first violation cheating on a homework, quiz, or other
assignment will result in a 0 on that assignment.

- A second violation, or cheating on an exam will result in
failing the class.
- For fairness, | adhere very strictly to these policies.

- All students in a problem set group are responsible for
violations, even those that they were not aware of. So |
emphasize — make sure you actually work on the problems
together and don't just split up the work.

17

Disability Services and Accomodations

UMass Amherst is committed to making reasonable, effective,
and appropriate accommodations to meet the needs to
students with disabilities.

- If you have a documented disability on file with Disability
Services, you may be eligible for reasonable
accommodations in this course.

- If your disability requires an accommodation, please email
me by next Friday 2/4 so that we can make arrangements.

18

Disability Services and Accomodations

UMass Amherst is committed to making reasonable, effective,
and appropriate accommodations to meet the needs to
students with disabilities.

- If you have a documented disability on file with Disability
Services, you may be eligible for reasonable
accommodations in this course.

- If your disability requires an accommodation, please email
me by next Friday 2/4 so that we can make arrangements.

| understand that people have different learning needs, home
situations, etc. If something isn't working for you in the class,
please reach out and let's try to work it out.

18

Questions?

19

Background on Randomized Algorithms

Types of Randomized Algorithms

Las-Vegas: Always correct, but the runtime is a random
variable (if you get unlucky, the algorithm might be slow).

Monte-Carlo: Runtime is bounded deterministically, but the
algorithm may be incorrect with small probability.

20

Complexity Theory

- P: Decidable by a deterministic polynomial time algorithm.

<y EPP: Decidable by a randomized algorithm which is always
orrect and runs in polynomial time in expectation.

" |- BPP: Decidable by a polynomial time randomized algorithm that
¢N\e is correct with probability > 2/3 on both 'yes’ and 'no’ instances

\/ (two-sided error).

- RP: Decidable by a polynomial time randomized algorithm that
is correct with probability 1 on ‘yes’ instances, and > 1/2 on 'no’
instances (one-sided error).

21

Complexity Theory

- P: Decidable by a deterministic polynomial time algorithm.

- ZPP: Decidable by a randomized algorithm which is always
correct and runs in polynomial time in expectation.

- BPP: Decidable by a polynomial time randomized algorithm that
is correct with probability > 2/3 on both 'yes’ and 'no’ instances
(two-sided error).

- RP: Decidable by a polynomial time randomized algorithm that
is correct with probability 1 on ‘yes’ instances, and > 1/2 on 'no’
instances (one-sided error).

Think-Pair-Share 1: Why for BPP is the probability of success stated
as 2/3, rather than say 1/4 or 9/10? Why for RP is it stated as 1/2 for
‘no’ instances rather than say 1/4 or 2/3?

Think-Pair-Share 2: How do these complexity classes compare?
Which is the biggest? Which is the smallest? 21

Lo Lo 1) g0 o)
Think-Pair-Share 1: Why for BPP is the probability of success

stated as 2/3, rather than say 1/4 or 9/10? Why for RP is it
stated as 1/2 for ‘no’ instances rather than say r2/3?

SUC@3S Pm\o@\o\i\% < l/L b TP 5 h\uk\&és\\

e ooyt ¢ (sd Yo ACaN VI NV
poviass 0y Moy mopily e iy,

R P O N R R

Think-Pair-Share 2: How do these complexity classes compare?
Which is the biggest? Which is the smallest?

popPP RP 3PP

frarmis ‘:) ‘6|opo§' pe 33 00 'not iaghwna,
P C %P(PC QP < pPP
€ WP Lsghs o6 prb\o\ws sovlde coprtin

= e RP lr\\))Pe: of U&bri‘HﬂM py)

Complexity Theory

Major Open Question: P C ZPP C RP C BPP but does P = BPP?

23

Complexity Theory

Major Open Question: P C ZPP C RP C BPP but does P = BPP?

- Most think yes, that sufficiently strong pseudorandom number
generators will eventually show that P = BPP.

—_—

23

Complexity Theory

Major Open Question:_F;g ZPP C RP C BPP but does P = BPP?

- Most think yes, that sufficiently strong pseudorandom number
generators will eventually show that P = BPP.

Are there natural problems in BPP that we don’t know are in P?

23

Complexity Theory

Major Open Question: P C ZPP C RP C BPP but does P = BPP?

- Most think yes, that sufficiently strong pseudorandom number
generators will eventually show that P = BPP. R

Are there natural problems in BPP that we don’t know are in P?

- For a long time primality testing was one such problem.

- Randomized algorithms for primality testing (Miller-Rabin ‘76,
‘80 and Solovay-Strassen ‘77) were very important. They made
RSA encryption possible - central in the rise of randomized
algorithms

. FZOOZ, Agrawal-Kayal-Saxena finally gave a polynomial time
deterministic test. In practice, randomized tests are still used.

23

Complexity Theory

Major Open Question: P C ZPP C RP C BPP but does P = BPP?

- Most think yes, that sufficiently strong pseudorandom number
generators will eventually show that P = BPP.

Are there natural problems in BPP that we don’t know are in P?

- For a long time primality testing was one such problem.

- Randomized algorithms for primality testing (Miller-Rabin ‘76,
‘80 and Solovay-Strassen ‘77) were very important. They made
RSA encryption possible - central in the rise of randomized
algorithms

- In 2002, Agrawal-Kayal-Saxena finally gave a polynomial time
deterministic test. In practice, randomized tests are still used.

- Currently, polynomial identity testing is probably the most

important problem known to be in BPP but not P.
23

Polynomial Identity Testing

Given an n-variable polynomial p(x, Xz, ..., Xp), determine if the
polynomial is identically zero. l.e,, if p(x1,X2,...,X,) = 0 for all
X1y .oy Xn.

24

Polynomial Identity Testing

Given an n-variable polynomial p(x, Xz, ..., Xp), determine if the
polynomial is identically zero. l.e,, if p(x1,X2,...,X,) = 0 for all
X1,...,Xp. E.g, you are given:

p(X1,X2, ..., X3) = X3(X1 — X2)° + (X1 + 2% — X3)> — X1(X2 + X3)°.

24

Polynomial Identity Testing

Given an n-variable polynomial p(x, Xz, ..., Xp), determine if the
polynomial is identically zero. l.e,, if p(x1,X2,...,X,) = 0 for all
X1,...,Xn. £, yOu are g|ven

X HLa,X' X+ 10
P(X1, X253 X3) = X3(X1 — X2) + (X1 + 20 — X3)" — X1(X2 + X3)%.

- Can expand out all the terms and check if they cancel. But the
number of terms can be as large as ("}9) ¢ 2J-e, exponential in
the number of variables n and the degree d. = F)o(é

24

Polynomial Identity Testing

Given an n-variable polynomial p(x, Xz, ..., Xp), determine if the
polynomial is identically zero. l.e,, if p(x1,X2,...,X,) = 0 for all
X1,...,Xp. E.g, you are given:

P(X1, Xa M, X3) = X3(X1 — X2)° + (X1 + 2X0 — X3)% — X1(X2 + X3)%.

- Can expand out all the terms and check if they cancel. But the
number of terms can be as large as ("}°) - i.e, exponential in

the number of variables n and the degree d.

Extremely Simple Randomized Algorithm: Just pick random values
for xq,...,x, and evaluate the polynomial at these values. With high
probability, if p(x1,...,Xs) = 0, the polynomial is identically 0!

P(5,2,m0, 1) = =1(5-2)* + (5+2-2+1) — 52 — 1)’ = 68.

_ - - A

24

Probability Review
(with some classic algorithmic applications)

Conditional Probability

Consider two random events A and B. .
. BY (‘o\:\\)\
- Conditional Probability: r\\’s "\WAEB g
oA P(B1A) - ?(anB) ?/(ﬁ (A\B) Pr(ANB) |
0 P PE) Pr(®).

- Baye’s Theorem:

‘rs dcul\G

Pr(BA! P(A

r(AlB

Pr(AB) ===

- Independence: A and B are independent if: 4and OY\)@ ‘p-
Pr(A|B) = Pr(A).
~—

Using the definition of conditional probability, independence means:
Pr(ANB)

\Pr(B) = Pr(A) = Pr(AnB) = Pr(A) - Pr(B).

——

25

Sets of events: For a set of n events, A,..., Ay, the events are k-wise
independent if for any subset S of at most k events, 0 -wib
Pr <ﬂA,—> =[IPr(a).

€S €S

For kR = n we just say the events ‘are independent’,
Ay S\ wm% et K
X, q - Wie

l/-)_\% N SRR NN
Ke] 7 callids

Xa A?,%

26

Sets of events: For a set of n events, A,..., Ay, the events are k-wise
independent if for any subset S of at most k events,

Pr (ﬂA,—) =TIPra).

ies i€es
For kR = n we just say the events ‘are independent’,

Random Variables: Two random variables X, Y are independent if for
all s7t,\Xd:_5 and Y =t are independent events. In other words:

—_—

PriX=snY=t)=Pr(X=s)-Pr(Y =1).

P

%Ny €8l ,\e§

26

Expectation and Variance

Consider a random X variable taking values in some finite set
S CR. Eg, forarandom dice roll, S ={1,2,3,4,5,6}.

! 2)
- Expectation: E[X] = > s Pr(X=5) - s. lz+ [ArSE éJ:=5.5
2 \
- Variance: Var[X] = E[(X — I[~£[-)§])2]. (,_3.5)% 1@5,5)3;‘ -

T T

08 —

Exercise: Verify that for any scalar o, E[a - X] = « - E[X] and
Var[a - X] = o? - Var[X].

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

28

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof: l)ae
EX+Y]| = PriXx=snY=t)- t
EX Y] = DD PriX=5nY=1) (s +1)

ses teT
— —
e 65

28

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:
E[X+Y]:ZZPr(xzsmY:t)-(s;;Q
ses teTl
=3 Y PrX=snY=1t)-s+> > PrX=snY=t)-t
sestel_ " W\ teT ses
P(x3) —0

PN:=1)

28

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:
EX+Y] =)) Pr(X=snY=t)-(s+1)
ses teT
=Y Y PrX=snY=1t)-s+> > PrX=snY=t)-t
ses teT teT ses
= Pr(X=5)-5+> Pr(Y=1)-t
M te(/_\/\/

g+ Y

28

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:
EX+Y] =)) Pr(X=snY=t)-(s+1)
ses teT
=Y Y PrX=snY=1t)-s+> > PrX=snY=t)-t
ses teT teT ses
= Pr(X=5)-5+> Pr(Y=1)-t
seS teT

= E[X] + E[Y].

28

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:

EX+Y] =)) Pr(X=snY=t)-(s+1)
:§§Pr(X:smY:t)-s+ZZPr(X:smY:t)-t
= Séizxzs)-SJrZPr(Y:tt)e-Ttses
:l%e[;]+E[Y]. -

Maybe the single most powerful tool in the analysis of
randomized algorithms.

28

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

29

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation) \ /. z:xj B Eﬁx-ﬁg,r)zj

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are E[X/\lj t
uncorrelated) when X,Y are independent. ﬂ’XI/&{ﬂ

29

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Together give:
VarX +Y] = E[(X +Y)?] — E[X + Y]?
S [y - B 2 AT - EE[\’]
) agh 9 -Gt 28 A
\/

A RREYYe)

29

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Together give:
Var[X+ Y] = E[(X+ Y)’] — E[X + Y]’
— E[X?] + 2E[XY] + E[V?] — (E[X] + E[Y])*

29

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.
Together give:
VarX +Y] = E[(X +Y)?] — E[X + Y]?
= E[X?] + 2E[XY] + E[Y?] — (E[X] + E[Y])?
= E[X°] + 2E[XY] + E[Y?] — E[X]* — 2E[X] - E[Y] — E[Y]?

29

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.
Together give:
VarX +Y] = E[(X +Y)?] — E[X + Y]?
= E[X?] + 2E[XY] + E[Y?] — (E[X] + E[Y])?
= E[X°] + 2E[XY] + E[Y?] — E[X]* — 2E[X] - E[Y] — E[Y]?
= E[X°] + E[Y)] — E[X]* — E[Y]?

29

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Together give:
VarX +Y] = E[(X +Y)?] — E[X + Y]?
= E[X?] + 2E[XY] + E[Y?] — (E[X] + E[Y])?
= E[X°] + 2E[XY] + E[Y?] — E[X]* — 2E[X] - E[Y] — E[Y]?
= E[X?] + E[Y?] — E[X]* — E[Y)?
= Var[X] + Var[Y].

29

Linearity of Variance

Exercise: Verify that for random variables Xy, ..., X,

Var (Zn: X,») = Zn:Var(X,),
i=1 i=1

whenever the variables are 2-wise independent (also called
pairwise independent).

30

Application 1: Matrix Product Testing

Matrix Product Testing

Given matrices A, B, C € R"*", output ‘yes' if AB = C and ‘no’
otherwise. Equivalently, check if AB— C = 0.

[alfe 3]

31

Matrix Product Testing

Given matrices A, B, C € R"*", output ‘yes' if AB = C and ‘no’
otherwise. Equivalently, check if AB— C = 0.

- How fast can you solve this problem deterministically?
. _ E)
N PoB ey ek oF PBTC Q)
1.33
Q(n

31

Matrix Product Testing

Given matrices A, B, C € R"*", output ‘yes' if AB = C and ‘no’
otherwise. Equivalently, check if AB— C = 0.

- How fast can you solve this problem deterministically?
- Any thoughts on how to solve it fasttlervvith randomness?
@@,) Gy Ao coun dom ‘\S
Lo, vl unless Q_‘,‘é. B3 ?)\,&% o o
incperct PO fon s,

31

Matrix Product Testing

Given matrices A, B, C € R"*", output ‘yes' if AB = C and ‘no’
otherwise. Equivalently, check if AB— C = 0.
- How fast can you solve this problem deterministically?

- Any thoughts on how to solve it faster with randomness?

Freivald’s algorithm: Xz ¢
)
1. Let x € R" be a vector with each éritry set independently to 0 or
1 with probability 1/2.
O%
2. Computey=(AB—-C)x. = P (%5«}- Cx
3. Output ‘'yes’ if y is the all zeros vector, and ‘no’ otherwise.
. . 1
Aunt Y O(\(\

pB-c =T el oIPT s

31

Matrix Product Testing

Given matrices A, B, C € R"*", output ‘yes' if AB = C and ‘no’
otherwise. Equivalently, check if AB— C = 0.

- How fast can you solve this problem deterministically?

- Any thoughts on how to solve it faster with randomness?

Freivald's algorithm:

1. Let x € R" be a vector with each entry set independently to 0 or
1 with probability 1/2.

2. Computey = (AB — O)x.
3. Output ‘'yes’ if y is the all zeros vector, and ‘no’ otherwise.
Runs in O(n?) time and if AB = C, always outputs ‘yes.

31

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability
at least 1/2.

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability
at least 1/2.

- Let D=AB— C. If AB # C, there is some i,j st D(i,j) # 0.

D =AB-C

IOI—‘OI—‘I—‘lx

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability

at least 1/2.

- Let D=AB—C. If AB # C, there is some i,j st D(i,j) # 0.

D =AB-C
06)
o © (Jc)j

IOI—‘OI—‘I—‘lx

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability

at least 1/2.

- Let D=AB—C. If AB # C, there is some i,j st D(i,j) # 0.

D =AB-C

Lol . - J

LOI—‘OI—‘I—‘x

< y(i) = D(i,1) - X(1) + ...+ D(1,)) - X()) + ..

y

.+ D(i,n) - x(n).

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability
at least 1/2.

- Let D=AB—C. If AB # C, there is some i,j st D(i,j) # 0.

D = AB-C y

X
]
I!) N :D(;)'))-X(j\-l—j
o] =
1
0

. y(i):D(i,1)~xQ)/+...+D(I,j)-x(j)+‘..+D(i,n)-x(n).

—

- Let's = Y, D(i, k) - x(k). 50 y() ~(0(.)) - X[)

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability
at least 1/2.

- Let D=AB—C. If AB # C, there is some i,j st D(i,j) # 0.

y()y=D@,1) - x(N) + ...+ D(I.L) - x(U) + ...+ D(i,n) - x(n).

- Lets =3, D(i, k) - x(k). S
<y

P%O] = Prly(i) = 0|s = 0] - Pr[s = 0] 4 Pr[y(i) = O[s # 0] - Pr[s # 0]

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability

at least 1/2.
- Let D=AB—C. If AB # C, there is some i,j st D(i,j) # 0.
- y()y=D@,1) - x(1) + ...+ D(i,)) - x(J) + ...+ D(i,n) - x(n).

+ Lets =30, D(i k) - x(k). S0 y(i) = D(J) - X()) 4.

¢lh

ApS
Priy() = 0] = Py() = Ols = 0] Prls = 0] + Priy(i) = Ols 0] -Prls # 0]

oy — o — o) = PA{x 70 [570) Fr(xdid=0) °
- Priy(i) = 0[s.£ 0] = D~ (D0 jxt) '5f’>¢9) br X() >

7_
-
L

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability
at least 1/2.

- Let D=AB—C. If AB # C, there is some i,j st D(i,j) # 0.

- y()y=D@,1) - x(1) + ...+ D(i,)) - x(J) + ...+ D(i,n) - x(n).

- lets =37, D(i,R) - x(R). So y(i) = D(i.)) - x(J) +s.

Prly(i) = 0] = Pr[y(i) = 0|s = 0] - Pr[s = 0] 4+ Pr[y(i) = 0|s # 0] - Pr[s # 0]
1

- Pr[s = 0] + 7Pr[sjé/0] =

2 2T

< 2
. 2
- Priy(i) = 0Js = 0] =
-+ Priy(i) = 0]s # 0] £

N\—— ~N\—

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability
at least 1/2.

- Let D=AB—C. If AB # C, there is some i,j st D(i,j) # 0.
- y()y=D@,1) - x(1) + ...+ D(i,)) - x(J) + ...+ D(i,n) - x(n).
- lets =37, D(i,R) - x(R). So y(i) = D(i.)) - x(J) +s.

Prly(i) = 0] = Pr[y(i) = 0|s = 0] - Pr[s = 0] 4+ Pr[y(i) = 0|s # 0] - Pr[s # 0]

% prls = 0] + 1Pr[s;£0]

- Pry(i) = Ols = 0] =
- Priy(i) = 0]s # 0] =

32

Freivald’'s Analysis

Theorem: If AB # C, Freivald’s algorithm outputs ‘no” with probability
at least 1/2.

- Let D=AB—C. If AB # C, there is some i,j st D(i,j) # 0.
- y()y=D@,1) - x(1) + ...+ D(i,)) - x(J) + ...+ D(i,n) - x(n).
- lets =37, D(i,R) - x(R). So y(i) = D(i.)) - x(J) +s.

Priy(i) = 0] =

<

rly(i) = 0|s = 0] - Pr[s = 0] + Pr[y(i) = 0Ols # Q] - Pr[s # 0]

N — T

- Pr[s = 0] + %Pr[s #0] = %

- Pry(i) = Ols = 0] =
- Priy(i) = 0]s # 0] =

Conclusion: If AB # C, y is not all 0 with probability at least 1/2. l.e,

Freivald’s algorithm outputs ‘no’ with probability at least 1/2.
32

Freivald’s Algorithm

Upshot: Freivald’s algorithm runs in O(n?) time, as compared
to O(n®) time to deterministically check if AB = C. Satisfies:

- If AB = C, outputs ‘yes.
- If AB # C, outputs ‘no” with probability at least 1/2.

33

Freivald’s Algorithm

I \ | 0

<

Upshot: Freivald’s algorithm runs in O(n?) time, as compared
to O(n®) time to deterministically check if AB = C. Satisfies:

- If AB = C, outputs ‘yes.
- If AB # C, outputs ‘no” with probability at least 1/2.
Repeating k times boosts the success probability to 1 — 1/2%.

le. ~ 0.999 for k = 10. T
—_—

33

