
COMPSCI 690RA: Problem Set 3

Due: 4/15 by 8pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Tighter Bounds for Trace Estimation (4 points)

Consider any matrix A ∈ Rn×n. Use the Hanson-Wright inequality to show that if x1, . . . ,xm ∈
{−1, 1}n are chosen to have independent and uniformly distributed ±1 entries, then for m =

O
(
log(1/δ)

ε2

)
, T̄ = 1

m

∑m
i=1 xTi Axi satisfies,

Pr
[
|T̄− tr(A)| > ε‖A‖F

]
≤ δ.

How does this compare to the bound proven in class using Chebyshev’s inequality?

2. Matrix Concentration from Scratch (8 points)

Consider a random symmetric matrix M ∈ Rn×n where Mij = Mji is set independently to 1
with probability 1/2 and −1 with probability 1/2. Let ‖M‖2 = maxx:‖x‖=1 ‖Mx‖2 be the spectral
norm of M. Recall that ‖M‖2 is equal to the largest singular value of M, which equals the largest
magnitude of one of its eigenvalues.

1. (2 points) Give upper and lower bounds on ‖M‖2 that hold deterministically – i.e., for any
random choice of the entries of M. Hint: You’ll probably want to use ‖M‖F , and its relation
to the singular values to derive your bounds.

2. (2 points) Observe that you can also write ‖M‖2 = maxx:‖x‖=1 |xTMx|. Show that for any

x ∈ Rn with ‖x‖2 = 1, with probability ≥ 1− δ, |xTMx| = c
√

log(1/δ) for some constant c.

Hint: Use Hoeffding’s inequality, which is a useful variant on the Bernstein inequality. For
independent random variables X1, . . . ,Xn, and scalars a1, . . . , an, b1, . . . , bn with Xi ∈ [ai, bi],

Pr [|
∑n

i=1 Xi − E[
∑n

i=1 Xi]| ≥ t] ≤ 2 exp
(

−2t2∑n
i=1(bi−ai)2

)
.

3. (4 points) Prove that with probability 1 − 1
nc1 , ‖M‖2 ≤ c2

√
n log n for some fixed constants

c1, c2. Hint: Use an ε-net and part (1).
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3. Randomized Preconditioning (12 points)

One way that subspace embeddings are often used in practice are within preconditioned iterative
methods for linear regression. Here we will see how to analyze one such method. Given A ∈ Rn×d
and b ∈ Rn, the goal is to find an approximate minimizer x ∈ Rd of the least squares loss function
‖Ax− b‖22.

1. (2 points) Assume that S ∈ Rm×n is an 1/4-subspace embedding for A ∈ Rn×d. I.e., for all
x ∈ Rd, 3

4‖Ax‖2 ≤ ‖SAx‖2 ≤
5
4‖Ax‖2. Prove that all eigenvalues of (ATSTSA)−1ATA lie in

the range [1/2, 2].

Hint: You may assume that ATA has full rank. You may also want to use that for any two
matrices M,N ∈ Rd×d, the non-zero eigenvalues of MN are equal to those of NM .

2. (2 points) Consider solving least squares regression iteratively, starting with some guess x0 ∈
Rd and repeatedly applying the iteration xi+1 = xi − ηAT (Axi − b), where η ∈ (0, 1) is some
step size. Let x∗ = arg minx∈Rd ‖Ax− b‖22. Prove that this iteration is equivalent to:

xi+1 = (I − ηATA)(xi − x∗) + x∗.

Hint: Prove that ATAx∗ = AT b.

3. (2 points) Let λmax(ATA), λmin(ATA) be the largest and small eigenvalues of ATA respec-

tively, and let κ = λmax(ATA)
λmin(ATA)

. Prove that if we set η = 1
λmax(ATA)

, then the tth iterate satisfies:

‖xt − x?‖2 ≤
(

1− 1

κ

)t
· ‖x0 − x?‖2.

Hint: Bound the eigenvalues of I − ηATA.

4. (2 points) Use the above to show for any ε ≥ 0, after t = O (κ · log(1/ε)) iterations, the tth

iterate satisfies ‖xt − x?‖2 ≤ ε‖x?‖2, assuming that we initialize with x0 = 0.

5. (2 points) κ is known as the condition number of ATA, and when it is large, the performance
of this, and many other iterative methods for linear regression degrade. To avoid this we will
instead consider a preconditioned update: let S ∈ Rm×n be random sketching matrix. And
update: xi+1 = xi−η(ATSTSA)−1AT (Axi− b). Following the analysis above, and using part
(1), show that if S is an 1/4-subpsace embedding for A, then this preconditioned method with
an appropriately chosen η, has ‖xt − x?‖2 ≤ ε‖x?‖2 after t = O(log(1/ε)) iterations. That is,
there is no dependence on κ.

6. (2 points) How large must m be so that S satisfies the required subspace embedding property
with probability at least 99/100? Assuming that SA ∈ Rm×d is already computed, how long
does it take to compute (ATSTSA)−1? And how long does each iteration of the preconditioned
method take? How does this compare to the non-preconditioned method? How about to
directly solving the system using an exact method? Assume that n� d in your discussion.

4. Compressed Sensing From Subspace Embedding (6 points)

Given a vector x ∈ Rn and a random matrix S ∈ Rm×n, consider computing y = Sx. If m < n,
you can in general not determine x ∈ Rn from y ∈ Rm, since S is not an invertible map. Here, we
will argue that you can recover x, assuming that it is k-sparse for small enough k. I.e., that it has
at most k nonzero entries. This is known as compressed sensing or sparse recovery.
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1. (2 points) Assume that S satisfies the distributional JL lemma/subspace embedding theorem

proven in class. I.e., for any A ∈ Rn×d, if m = O
(
d+log(1/δ)

ε2

)
, then with probability at least

1 − δ, S is an ε-subspace embedding for A. Prove that if m = O
(
k log(n/k)+log(1/δ)

ε2

)
, with

probability ≥ 1− δ, for all z ∈ Rn such that z is k-sparse, (1− ε)‖z‖2 ≤ ‖Sz‖2 ≤ (1 + ε)‖z‖2.
Hint: Show that with high probability, S is an ε-subspace embedding simultaneously for

(
n
k

)
different matrices.

2. (2 points) Use the above result, applied with k′ = 2k, to show that ifm = O (k log(n/k) + log(1/δ)),
and x ∈ Rn is k-sparse, then with probability ≥ 1−δ, x can be recovered exactly from y = Sx.

Hint: Consider solving the equation y = Sx, under the restriction that x is k-sparse. Show
that there is a unique solution.

3. (2 points) Argue that the above result is nearly optimal in terms of how much x is compressed.
In particular, prove that for any function f : Rn → {0, 1}o(k log(n/k)), given f(x) for some k-
sparse x ∈ Rn, one cannot recover x uniquely, even under the assumption that all entries of
x are either 0 or 1.
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