
COMPSCI 690RA: Problem Set 2

Due: 3/3 by 8pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

Hint: The following two inequalities may be helpful throughout the course: for any x > 0, (1 +
x)1/x ≤ e and (1− x)1/x ≤ 1/e.

Notation: Throughout, [n] denotes the set {1, . . . , n}.

1. More Probability Practice (8 points)

1. (2 points) Explicitly calculate the probability of hitting 60 or more heads when flipping a fair
coin 100 times independently, and compare this with the Chernoff bound (for both variants
shown in class). Do the same for 600 or more heads in 1000 flips.

2. (3 points) We would like to construct a random permutation of [n], given a blackbox that
outputs numbers independently and uniformly at random from [k] for k ≥ n. If we compute
a function f : [n] → [k] with f(i) 6= f(j) for all i 6= j, then this yields a permutation:
simply output the numbers in [n] according to the order of the f(i) values. To construct
such a function, do the following: iterate though each of 1, . . . , n and for each, choose f(j) by
repeatedly obtaining numbers from the black box and setting f(j) to the first number found
such that f(j) 6= f(i) for i < j.

Prove that this approach gives a permutation of [n] chosen uniformly at random from all
permutations. Find the expected number of calls to the black box that are needed when
k = n and k = 2n. For the case k = 2n, give an upper bound (as a function of n) on the
probability that the number of calls to the black box is > 4n.

3. (3 points) In practice, a fully random hash function that maps any input to a uniform and
independently chosen output is not efficiently implementable. So, random hash functions that
approximate the behavior of a fully random hash function are often used. A k-universal hash
function h : U → [n] is any random hash function that satisfies, for any inputs x1, . . . , xk ∈ U ,

Pr[h(x1) = h(x2) = . . . = h(xk)] ≤ 1

nk−1
.

1



Thus is a weaker variant of a k-wise independent hash function. Suppose you hash n balls
into n bins using a 2-universal hash function. Show that for t = c

√
n for some large enough

constant c, then the maximum load on any bin exceeds t with probability at most 1/10. Hint:
Use linearity of expectation but don’t use a union bound.

Generalize this result to k > 2. For what value of t is the probability of the maximum load
exceeding t at most 1/10?

2. Communication Games (10 points)

1. (3 points) Consider the following communication problem: Alice and Bob both have n-bit
strings a, b. If a 6= b, both must output the index of some position on which their inputs
do not match. If they are given a = b, they can output anything they want. Describe a
randomized protocol for solving this problem with probability ≥ 2/3 and give a bound on its
communication complexity in terms of bits. You may assume that players have access to a
shared source of random bits.

2. (3 points) Prove a lower bound on the bits of communication needed for any deterministic
protocol to solve the above problem. As in class, you may restrict yourself to considering
protocols in which the players alternate sending 1-bit at a time.

3. (4 points) Consider the setting discussed in class, where n nodes of a graph know only their
neighborhood and would like to send messages to a central server, such that the server can
determine if the graph is connected with high probability. Consider the harder problem of
directed connectivity: the graph is directed and each node only knows its outgoing edges.
There are two nodes, s, t, known to all, and the central server wants to determine if there is
a directed path from s to t.

Show that if the nodes are only allowed one-way communication to the central server, then
this problem requires Ω(n2) total bits of communication to solve (as opposed to O(n · logc n)
for undirected connectivity.

Hint: Try to use an indistinguishability argument like we did for the communication com-
plexity of equality testing in class. It suffices to consider directed acyclic graphs, and you
may assume for simplicity that the protocol is deterministic – there is not a significant gap
between randomized and deterministic algorithms here.

3. Sketching for Minimum Spanning Tree (6 points)

The `0 sampling algorithm for graph connectivity described in class in fact does not just determine
connectivity, but, if the graph is connected, outputs a spanning tree. Consider the more difficult
problem of outputting a minimum weight spanning tree. Show how to solve this problem with high
probability (i.e., ≥ 1−1/nc for some constant c), using just O(n logc n) total bits of communication
for some constant c. You may use several rounds of interaction with the central server, however
any messages sent by the central server back to the nodes must be included in your accounting of
the communication complexity. You may assume that edges have positive integer weights bounded
by nc for some constant c. A weight of ‘0’ indicates that the edge is not present in the graph.

Hint: Implement Boruvka’s algorithm for minimum spanning tree – instead of picking an arbitrary
outgoing edge from each connected component, pick the minimum weight outgoing edge. The
challenge is to figure out how each node can identify the minimum weight outgoing edge from their
connected component after they start being merged together.

2


