
COMPSCI 690RA: Final Review

General Info: The final will be held May 6th from 10:30am-12:30pm in CS 140. The
test will be closed book, with no cheatsheets or calculators allowed. You must show your
work/derive any answers as part of the solutions to receive full credit (and partial credit if you
make a mistake).

Format: The format will be very similar to the midterm: the test will contain 4-5 questions. The
first will be a mix of True/False or Always/Sometimes/Never style questions. The rest will be short
answer style questions, like homework questions, but significantly less involved.

Studying Tips:

• Do as many practice problems as you can – from this review sheet, the books, the quizzes,
the homeworks, and the ‘Exercise’ or ‘Think-Pair-Share’ questions given on the slides. For
quizzes/homeworks/in class questions – try to re-solve without looking at the answer key or
a solution given in the next slide. Then check to see how you did.

• For all practice questions, try to solve (and write down) a solution first without resources and
somewhat quickly, as you would on the exam. Then go back and more slowly work through
the problem, see if you solution is correct, etc.

• We encourage you to post on Piazza to check answers/discuss approaches.

Pre-Midterm and Last Class Material:

The final will not cover material from the last class on the probabilistic method. It will also not
focus on material from before the midterm (Lectures 1-6). However, you should be able to use the
tools developed in the first half of the course. E.g.,

• Basic probability calculations, applications of linearity of expectation, linearity of variance,
concentration bounds, and union bound.

• Do not need to memorize any concentration bounds outside Markov’s and Chebyshev’s.

• Idea of proving communication lower bounds and other lower bounds via pigeonhole principle
style arguments.

• Basics of randomized linear algebra – ability to work with randomly sampled matrices and
vectors.

1 Concepts to Study

Randomized Numerical Linear Algebra

• Subspace embedding definition and application to approximate regression.
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• ε-net definition, and motivation for why they are used to prove subspace embedding from the
Johnson-Lindenstrauss lemma. Should understand high level idea of this proof, but don’t
need to memorize details.

• The Johnson-Lindenstrauss lemma statement and ability to apply Hanson-Wright inequality.
Do not need to memorize Hanson-Wright.

• Definition of leverage scores and high level idea of subspace embedding via leverage score
sampling and matrix Chernoff bound. Do not need to memorize matrix Chernoff bound.

• Loewner ordering notation. I.e., for M,N ∈ Rd×d, M � N if for all x ∈ Rd, xTMx ≤ xTNx.

• Variational characterization of the leverage scores.

• Spectral sparsifier definition and its connection to cut preservation and subspace embedding.

• Equivilance between leverage scores of the vertex-edge incidence matrix and effective resis-
tances. Don’t need to memorize the proof.

Markov Chains

• Definition of a Markov chain and view in terms of state graph and transition matrix.

• High level idea behind Markov chain based 2-SAT and 3-SAT algorithms. Don’t need to
memorize the analysis but should understand the tools used. E.g., solving for the expected
number of steps to reach a satisfying assignment via a linear recurrence.

• Gambler’s ruin set up, analysis, and conclusion.

• Definition of a stationary distribution, and conditions for having a stationary distribution
and for that distribution being unique (fundamental theorem of Markov chains).

• Related to the above, irreducibility and aperiodicity. You should be able to recognize when
a Markov chain is/is not irreducible/aperiodic.

• Fact that symmetric Markov chains have uniform stationary distributions.

• Definition of total variation (TV) distance, and mixing time.

• Kontorovich-Rubinstein duality for TV distance, and implication for bounding mixing time
via coupling.

• Ability to construct a coupling for a Markov chain and analyze its coupling time.

• Metropolis-hastings algorithm – should understand why it achieves the desired stationary
distribution, proportional to the density p(·).

• Ability to design a Markov chain that converges to a given distribution (like the independent
set examples using a symmetric Markov chain and Metropolis-Hastings covered in class).

• Do not need to know counting-sampling reductions in detail.
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2 Practice Questions

1. Subspace Embeddings

1. Give an upper bound on required the size of an ε net over the d-dimensional cube [−1, 1]d.
Use as volume argument to show that your upper bound is tight up to constant factors.

2. Consider two matrices A,B ∈ Rn×d such that A = BC for some invertible C ∈ Rd×d. If S is
an ε-subspace embedding for A, then S is also an ε-subspace embedding for B. ALWAYS
SOMETIMES NEVER.

3. True of False: For any matrix A ∈ Rd×d, 2A � A. If true, why? If false, what is one
assumption you can make on A so that it is true?

4. True or False: For any matrix A ∈ Rn×d, there is some matrix S ∈ Rd×n such that, for all
x ∈ Rd, ‖SAx‖2 = ‖Ax‖2.

5. Prove directly, without using an ε-net that if S ∈ Rm×n is a random ±1 matrix with m =

O
(
d+log(1/δ)

ε2

)
, and A ∈ Rn×d is any matrix, then with probability ≥ 1− δ, for all x ∈ {0, 1}d,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

2. Leverage Scores and Spectral Sparsifiers:

1. There exists a spectral sparsifier of a connected graph G with < n − 1 edges. ALWAYS
SOMETIMES NEVER

2. For a matrix A ∈ Rn×d with rows a1, . . . , an ∈ Rd, the leverage score of the ith row τi, satsifies
τi = ‖ai‖22 ALWAYS SOMETIMES NEVER.

3. Consider two matrices A,B ∈ Rn×d such that A = BC for some invertible C ∈ Rd×d. How
do the leverage scores of A compare to those of B?

4. Let G be the complete graph on n-nodes, and let G̃ be a 1/2-spectral sparsifier of G. Assume
that G̃ has O(n log n) edges. Argue that G̃ has at least one edge in it with weight at least
Ω(n/ log n). Hint: Think about how G̃ preserves cuts in G.

5. For vertex-edge incidence matrix B ∈ Rm×n and current demand vector χ, the electrical flow
satisfying χ is the minimum `2 norm solution to the linear system BT f = χ. When is it the
unique solution to this linear system?

3. Markov Chains:

1. Exercises 7.3, 7.6, 7.7, 7.11, 7.20, 7.21 from Mitzenmacher, Upfal.

2. Is a random walk on a connected, undirected graph always irreducible? Is it always aperiodic?
What about on a connected undirected graph where one of the nodes has a self loop?

3. Let P be the uniform distribution on the integers {1, 2, . . . , 100}. Let Q be the uniform
distribution on the even integers {2, 4, 6, ..., 100}. What is ‖P −Q‖TV ?

4. Prove formally the claim made in class that if qt,i is the state distribution of a Markov chain
after taking t steps starting from state i, and π is a stationary distribution of the chain, then
‖qt+1,i − π‖TV ≤ ‖qt,i − π‖TV . Does this fact require that the Markov chain is aperiodic and
irreducible? Does it require the Markov chain to have a unique stationary distribution?
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5. Consider the ‘Glauber dynamics’ for sampling an independent set: to generate set Xi+1 from
set Xi, sample a random vertex v from the graph. Let X′ = Xi ∪ {v} with probability
1/2 and X′ = Xi \ {v} with probability 1/2. If X′ is an independent set, let Xi+1 = X′.
Else, let Xi+1 = Xi. Is this Markov chain irreducible and aperiodic? What is its stationary
distribution?

6. Describe a Markov chain whose stationary distribution is the uniform distribution over valid
∆-colorings of a graph. I.e., assignments of each vertex to one of ∆ colors, such that no two
vertices with the same color are connected by an edge. Assume that there is at least one valid
∆-coloring of the graph.

7. Is the Markov chain you found above irreducible and aperiodic?

8. For a valid coloring X of a graph G, let c(X) be the number of unique colors used in that
coloring. Observe that c(X) ≤ n where n is the number of nodes and c(X) ≥ χ(G), where
χ(G) is the chromatic number of G. Describe a Markov chain, which is both irreducible
and aperiodic, whose stationary distribution samples a valid coloring X with probability

π(X) = λc(X)∑
valid colorings Y λc(Y ) , for some parameter λ.

9. Consider an irreducible, aperiodic Markov chain, where all states transition to a single ‘home
state’ h with probability 1/c. I.e., Pi,h = c for all i. Give an upper bound on the ε-mixing
time, τ(ε) for this chain.

10. Describe a Markov chain for which any distribution π ∈ [0, 1]m is a stationary distribution.
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