COMPSCI 690RA: Final Review

General Info: The final will be held May 6th from 10:30am-12:30pm in CS 140. The test will be closed book, with no cheatsheets or calculators allowed. You must show your work/derive any answers as part of the solutions to receive full credit (and partial credit if you make a mistake).

Format: The format will be very similar to the midterm: the test will contain 4-5 questions. The first will be a mix of True/False or Always/Sometimes/Never style questions. The rest will be short answer style questions, like homework questions, but significantly less involved.

Studying Tips:

- Do as many practice problems as you can from this review sheet, the books, the quizzes, the homeworks, and the 'Exercise' or 'Think-Pair-Share' questions given on the slides. For quizzes/homeworks/in class questions try to re-solve without looking at the answer key or a solution given in the next slide. Then check to see how you did.
- For all practice questions, try to solve (and write down) a solution first without resources and somewhat quickly, as you would on the exam. Then go back and more slowly work through the problem, see if you solution is correct, etc.
- We encourage you to post on Piazza to check answers/discuss approaches.

Pre-Midterm and Last Class Material:

The final **will not** cover material from the last class on the probabilistic method. It will also not focus on material from before the midterm (Lectures 1-6). However, you should be able to use the tools developed in the first half of the course. E.g.,

- Basic probability calculations, applications of linearity of expectation, linearity of variance, concentration bounds, and union bound.
- Do not need to memorize any concentration bounds outside Markov's and Chebyshev's.
- Idea of proving communication lower bounds and other lower bounds via pigeonhole principle style arguments.
- Basics of randomized linear algebra ability to work with randomly sampled matrices and vectors.

1 Concepts to Study

Randomized Numerical Linear Algebra

• Subspace embedding definition and application to approximate regression.

- ϵ -net definition, and motivation for why they are used to prove subspace embedding from the Johnson-Lindenstrauss lemma. Should understand high level idea of this proof, but don't need to memorize details.
- The Johnson-Lindenstrauss lemma statement and ability to apply Hanson-Wright inequality. Do not need to memorize Hanson-Wright.
- Definition of leverage scores and high level idea of subspace embedding via leverage score sampling and matrix Chernoff bound. Do not need to memorize matrix Chernoff bound.
- Loewner ordering notation. I.e., for $M, N \in \mathbb{R}^{d \times d}$, $M \preceq N$ if for all $x \in \mathbb{R}^d$, $x^T M x \leq x^T N x$.
- Variational characterization of the leverage scores.
- Spectral sparsifier definition and its connection to cut preservation and subspace embedding.
- Equivilance between leverage scores of the vertex-edge incidence matrix and effective resistances. Don't need to memorize the proof.

Markov Chains

- Definition of a Markov chain and view in terms of state graph and transition matrix.
- High level idea behind Markov chain based 2-SAT and 3-SAT algorithms. Don't need to memorize the analysis but should understand the tools used. E.g., solving for the expected number of steps to reach a satisfying assignment via a linear recurrence.
- Gambler's ruin set up, analysis, and conclusion.
- Definition of a stationary distribution, and conditions for having a stationary distribution and for that distribution being unique (fundamental theorem of Markov chains).
- Related to the above, irreducibility and aperiodicity. You should be able to recognize when a Markov chain is/is not irreducible/aperiodic.
- Fact that symmetric Markov chains have uniform stationary distributions.
- Definition of total variation (TV) distance, and mixing time.
- Kontorovich-Rubinstein duality for TV distance, and implication for bounding mixing time via coupling.
- Ability to construct a coupling for a Markov chain and analyze its coupling time.
- Metropolis-hastings algorithm should understand why it achieves the desired stationary distribution, proportional to the density $p(\cdot)$.
- Ability to design a Markov chain that converges to a given distribution (like the independent set examples using a symmetric Markov chain and Metropolis-Hastings covered in class).
- Do not need to know counting-sampling reductions in detail.

2 Practice Questions

1. Subspace Embeddings

- 1. Give an upper bound on required the size of an ϵ net over the *d*-dimensional cube $[-1, 1]^d$. Use as volume argument to show that your upper bound is tight up to constant factors.
- 2. Consider two matrices $A, B \in \mathbb{R}^{n \times d}$ such that A = BC for some invertible $C \in \mathbb{R}^{d \times d}$. If **S** is an ϵ -subspace embedding for A, then **S** is also an ϵ -subspace embedding for B. ALWAYS SOMETIMES NEVER.
- 3. True of False: For any matrix $A \in \mathbb{R}^{d \times d}$, $2A \succeq A$. If true, why? If false, what is one assumption you can make on A so that it is true?
- 4. True or False: For any matrix $A \in \mathbb{R}^{n \times d}$, there is some matrix $S \in \mathbb{R}^{d \times n}$ such that, for all $x \in \mathbb{R}^d$, $\|SAx\|_2 = \|Ax\|_2$.
- 5. Prove directly, without using an ϵ -net that if $S \in \mathbb{R}^{m \times n}$ is a random ± 1 matrix with $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, and $A \in \mathbb{R}^{n \times d}$ is any matrix, then with probability $\geq 1 \delta$, for all $x \in \{0, 1\}^d$, $(1 \epsilon) \|Ax\|_2 \leq \|SAx\|_2 \leq (1 + \epsilon) \|Ax\|_2$.

2. Leverage Scores and Spectral Sparsifiers:

- 1. There exists a spectral sparsifier of a connected graph G with < n 1 edges. ALWAYS SOMETIMES NEVER
- 2. For a matrix $A \in \mathbb{R}^{n \times d}$ with rows $a_1, \ldots, a_n \in \mathbb{R}^d$, the leverage score of the i^{th} row τ_i , satsifies $\tau_i = ||a_i||_2^2$ ALWAYS SOMETIMES NEVER.
- 3. Consider two matrices $A, B \in \mathbb{R}^{n \times d}$ such that A = BC for some invertible $C \in \mathbb{R}^{d \times d}$. How do the leverage scores of A compare to those of B?
- 4. Let G be the complete graph on n-nodes, and let \tilde{G} be a 1/2-spectral sparsifier of G. Assume that \tilde{G} has $O(n \log n)$ edges. Argue that \tilde{G} has at least one edge in it with weight at least $\Omega(n/\log n)$. **Hint:** Think about how \tilde{G} preserves cuts in G.
- 5. For vertex-edge incidence matrix $B \in \mathbb{R}^{m \times n}$ and current demand vector χ , the electrical flow satisfying χ is the minimum ℓ_2 norm solution to the linear system $B^T f = \chi$. When is it the unique solution to this linear system?

3. Markov Chains:

- 1. Exercises 7.3, 7.6, 7.7, 7.11, 7.20, 7.21 from Mitzenmacher, Upfal.
- 2. Is a random walk on a connected, undirected graph always irreducible? Is it always aperiodic? What about on a connected undirected graph where one of the nodes has a self loop?
- 3. Let P be the uniform distribution on the integers $\{1, 2, ..., 100\}$. Let Q be the uniform distribution on the even integers $\{2, 4, 6, ..., 100\}$. What is $||P Q||_{TV}$?
- 4. Prove formally the claim made in class that if $q_{t,i}$ is the state distribution of a Markov chain after taking t steps starting from state i, and π is a stationary distribution of the chain, then $||q_{t+1,i} - \pi||_{TV} \leq ||q_{t,i} - \pi||_{TV}$. Does this fact require that the Markov chain is aperiodic and irreducible? Does it require the Markov chain to have a unique stationary distribution?

- 5. Consider the 'Glauber dynamics' for sampling an independent set: to generate set \mathbf{X}_{i+1} from set \mathbf{X}_i , sample a random vertex v from the graph. Let $\mathbf{X}' = \mathbf{X}_i \cup \{v\}$ with probability 1/2 and $\mathbf{X}' = \mathbf{X}_i \setminus \{v\}$ with probability 1/2. If \mathbf{X}' is an independent set, let $\mathbf{X}_{i+1} = \mathbf{X}'$. Else, let $\mathbf{X}_{i+1} = \mathbf{X}_i$. Is this Markov chain irreducible and aperiodic? What is its stationary distribution?
- 6. Describe a Markov chain whose stationary distribution is the uniform distribution over valid Δ-colorings of a graph. I.e., assignments of each vertex to one of Δ colors, such that no two vertices with the same color are connected by an edge. Assume that there is at least one valid Δ-coloring of the graph.
- 7. Is the Markov chain you found above irreducible and aperiodic?
- 8. For a valid coloring X of a graph G, let c(X) be the number of unique colors used in that coloring. Observe that $c(X) \leq n$ where n is the number of nodes and $c(X) \geq \chi(G)$, where $\chi(G)$ is the chromatic number of G. Describe a Markov chain, which is both irreducible and aperiodic, whose stationary distribution samples a valid coloring X with probability $\pi(X) = \frac{\lambda^{c(X)}}{\sum_{\text{valid colorings } Y} \lambda^{c(Y)}}$, for some parameter λ .
- 9. Consider an irreducible, aperiodic Markov chain, where all states transition to a single 'home state' h with probability 1/c. I.e., $P_{i,h} = c$ for all i. Give an upper bound on the ϵ -mixing time, $\tau(\epsilon)$ for this chain.
- 10. Describe a Markov chain for which any distribution $\pi \in [0,1]^m$ is a stationary distribution.