Logistics

- Problem Set 2 is due next Wednesday.
- One page project proposal due Tuesday 3/12.
- No quiz this week – focus on the problem set/project proposal.
Summary

Last Time:
- Graph connectivity with low communication
- Approach via Boruvka’s algorithm and sparse recovery/\ell_0 sampling.

Today:
- Finish up \ell_0 sampling analysis.
- Other approaches to sparse recovery and applications to data processing in streams.
- The count-sketch algorithm.
\ell_0 \text{ Sampling and Graph Sketching}
A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.

Saw how this can be accomplished via ℓ_0 sampling using messages of size just $O(\log^3 n)$.
Theorem: There exists a distribution over random matrices $A \in \mathbb{Z}^{O(\log^2 n) \times n}$ such that for any fixed $x \in \mathbb{Z}^n$, with probability at least $1 - 1/n^c$, we can learn (i, x_i) for some $x_i \neq 0$ from Ax.

Key Property: Given sketches Ax_1 and Ax_2, can easily compute $A(x_1 + x_2)$ and recover a nonzero entry from $x_1 + x_2$ with high probability.
Simulating Boruvka’s Algorithm via Sketches

- For independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$, each node computes $A_j v_i$ and sends these sketches to the central server. $O(\log^3 n)$ bits in total.

- The central server uses $A_1 v_1, \ldots, A_1 v_n$ to simulate the first step of Boruvka’s – i.e., to identify one outgoing edge from each node.

- For each subsequent step j, let $S_1, S_2, \ldots S_c$ be the current connected components. Observe that $\sum_{i \in S_k} v_i$ has non-zero entries corresponding exactly to the outgoing edges of S_k.

- So, from $A_j \sum_{i \in S_k} v_i = \sum_{i \in S_k} A_j v_i$, the server can find an outgoing edge from each connected component S_k. Thus, the server can simulate the jth round of Boruvka’s algorithm.

- Overall, using the $\log_2 n$ different sketches from each node, the server can simulate the full algorithm and determine with high probability if the graph is connected or not.
Implementing ℓ_0 Sampling
Construction:

- Let $S_0, S_1, \ldots, S_{\log_2 n}$ be random subsets of $[n]$. Each element is included in S_j independently with probability $1/2^j$.

- For each S_j, compute $a_j = \sum_{i \in S_j} x_i$, $b_j = \sum_{i \in S_j} x_i \cdot i$ and $c_j = \sum_{i \in S_j} x_i \cdot r^i \mod p$, where r is a random value in $[p]$ and p is a prime with $p \geq n^c$ for some large constant c.

- **Observe:** The vector $[a_1, \ldots, a_{\log_2 n}, b_1, \ldots, b_{\log_2 n}, c_1, \ldots, c_{\log_2 n}]$ can be written as Ax, where $A \in \mathbb{Z}^{3\log_2 n \times n}$ is a random matrix.
We will recover a nonzero element from a sampling level when there is **exactly one nonzero** element at that level.

With good probability, there is will exactly one element at some level. Can improve success probability via repetition.
$S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

\[a_j = \sum_{i \in S_j} x_i, \quad b_j = \sum_{i \in S_j} x_i \cdot i \] and
\[c_j = \sum_{i \in S_j} x_i \cdot r^i \mod p, \]
where r is a random value in $[p]$ and $p = n^c$ for large enough constant c.

Claim 1: If there is a unique $i \in S_j$ with $x_i \neq 0$, then $a_j = x_i$ and $b_j = x_i \cdot i$. So, from these quantities we can exactly determine (i, x_i).

Claim 2: c_j lets us test if there is a unique such i. In particular, we check that $\frac{b_j}{a_j} \in [n]$ and that $c_j = a_j \cdot r^{b_j/a_j} \mod p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} = \frac{1}{n^{c-1}}$.

Claim 2: \(c_j \) lets us test if there is a unique such \(i \). In particular, we check that \(\frac{b_j}{a_j} \in [n] \) and that \(c_j = a_j \cdot r^{b_j/a_j} \mod p \).

- If there is a unique \(i \in S_j \) with \(x_i \neq 0 \), the test passes.
- If not, it fails with probability at most \(\frac{n}{p} \leq \frac{1}{n^{c-1}} \).

Proof via polynomial identity testing: If \(|\{i \in S_j : x_i \neq 0\}| > 1 \), then

\[
p(r) = c_j - a_j r^{b_j/a_j} \mod p = \sum_{i \in S_j} x_i r^i - a_j r^{b_j/a_j} \mod p
\]

is a non-zero polynomial of degree at most \(n \) over \(\mathbb{Z}_p \).

- This polynomial has \(\leq n \) roots, so for a random \(r \in [p] \), \(\Pr[p(r) = 0] \leq \frac{n}{p} \).
- Thus, \(c_j = a_j r^{b_j/a_j} \) with probability \(\leq \frac{n}{p} \leq \frac{1}{n^{c-1}} \).
Completing The Analysis

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of $[n]$, sampled at rates $1/2^j$.

- If any S_j contains a unique i with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one S_j contains such an i.

![Matrix Example](image)

Claim: For j with $2^{j-2} \leq \|x\|_0 \leq 2^{j-1}$, $\Pr[|\{i \in S_j : x_i \neq 0\}| = 1] \geq 1/8$.

$$\Pr[|\{i \in S_j : x_i \neq 0\}| = 1] = \|x\|_0 \cdot \frac{1}{\|x\|_0-1} \cdot \left(1 - \frac{1}{\|x\|_0-1}\right)^{\|x\|_0-1}$$
Application to Streaming Computation
Consider a setting where an algorithm must process a stream of edge insertions or deletions, which define a graph. At the end of the stream, the algorithm should output whether that graph is connected or not.

Algorithmic Question: How much memory must an algorithm use to solve this problem with high probability?

What is the worst-case memory required by a naive deterministic algorithm that just stores the current state of the graph? How can you improve on this when there are no edge deletions?
Randomized Solution via ℓ_0 sampling

- The algorithm samples independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$ and maintains $A_j v_u$ for all j and all $u \in [n]$, where $v_u \in \mathbb{R}^{(n)}$ is the incidence vector for node u.

- $O(n \log^3 n)$ bits of storage in total.

- **Key Idea: Linear Updates.** When an edge (u, v) is inserted or deleted, one entry is either incremented or decremented in each of v_u, v_v. The algorithm can update $A_j v_u$ and $A_j v_v$ in $O(\log^2 n)$ time – simply set $A_j v_u = A_j v_u \pm A_{j,k}$.

\[
\begin{align*}
\text{l}_0 \text{ sampling matrix } A_j &= \\
\begin{pmatrix}
1 & -1 & 0 & 0 & 1 & -1 & 0 & 1 \\
-1 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \\
1 & 1 & -1 & 0 & -1 & -1 & 0 & 1 \\
0 & -1 & -1 & -1 & 1 & 1 & 1 & 0
\end{pmatrix} & \quad v_u &= \\
\begin{pmatrix}
1 \\
0 \\
0 \\
-1
\end{pmatrix} & \quad A_j v_u &= \\
\begin{pmatrix}
1 \\
-2 \\
1 \\
1
\end{pmatrix} & \quad \text{l}_0 \text{ sampling matrix } A_j &= \\
\begin{pmatrix}
1 & -1 & 0 & 0 & 1 & -1 & 0 & 1 \\
-1 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \\
1 & 1 & -1 & 0 & -1 & -1 & 0 & 1 \\
0 & -1 & -1 & -1 & 1 & 1 & 1 & 0
\end{pmatrix} \quad 13
\end{align*}
\]
Other Applications of Linear Sketching
• \(\ell_0 \) sampling is an example of a **linear sketching algorithm**. We compress our data via a random linear function (i.e., the random matrix \(A \)), and prove that we can still recover useful information from the compression.

\[
\begin{bmatrix}
1 & -1 & 0 & 0 & 1 & -1 & 0 & 1 \\
-1 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \\
1 & 1 & -1 & 0 & -1 & -1 & 0 & 1 \\
0 & -1 & -1 & -1 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

\[
x = \begin{bmatrix}
1 \\
0 \\
0 \\
-2 \\
0 \\
0 \\
3 \\
0
\end{bmatrix}
\]

\[
A x = \begin{bmatrix}
1 \\
-2 \\
1 \\
5
\end{bmatrix}
\]

• Linearity is useful because it lets us easily aggregate sketches in distributed settings and update sketches in streaming settings.

• Aside from recovering non-zero entries we might want to estimate norms or other aggregate statistics of \(x \), find large magnitude entries, sample entries with probabilities according to their magnitudes.
Goal: For a vector $x \in \mathbb{R}^n$ we would like to find all entries of x with magnitude at least $\epsilon \|x\|_2$ or $\epsilon \|x\|_1$.

Common Application:

- x is a vector of counts (e.g., views of videos, searches for products, visits from IP addresses, etc.) and we would like to identify all items with large counts.

- We often cannot store all of x in one place but must store a small-space compression of x as counts are updated over time, or must aggregate information about x across multiple machines.
Count Sketch

Set up: We would like to estimate all entries of a vector $x \in \mathbb{R}^n$ up to error $\epsilon \|x\|_2$ with probability at least $1 - \delta$, from a small linear sketch, of size $O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$.

- Let $m = O(1/\epsilon^2)$ and $t = O(\log(1/\delta))$.
- Pick t random **pairwise independent** hash functions $h_1, \ldots, h_t: [n] \rightarrow [m]$.
- Pick t random pairwise independent hash functions $s_1, \ldots, s_t: [n] \rightarrow \{-1, 1\}$.
- Compute t independent estimates of $x(i)$ as $\tilde{x}_j(i) = s(i) \cdot \sum_{k: h_j(k) = h_j(i)} x(k) \cdot s(k)$.
- Output the median of $\{\tilde{x}_1(i), \ldots, \tilde{x}_t(i)\}$ as our estimate.