• Problem Set 2 is due next Wednesday 2/21 at 11:59pm.
• Next week we do not have class on Thursday, so I will move my office hours to **Tuesday at 11:30am**.
Summary

Last Time:

- Practice questions on applications of linearity of expectation and variance from quiz.
- Balls-into-bins analysis showing max load of $O(\sqrt{n})$ with Chebyshev’s inequality.
- Start on exponential concentration bounds for sums of bounded independent random variables.

Today:

- Finish up exponential concentration bounds.
- Applications to balls-into-bins and linear probing analysis.
- Maybe start on hashing/finger printing?
Exponential Concentration Bounds
Chernoff Bound (simplified version): Consider independent random variables X_1, \ldots, X_n taking values in $\{0, 1\}$ and let $X = \sum_{i=1}^{n} X_i$. Let $\mu = \mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} X_i]$. For any $\delta \geq 0$

$$\Pr(X \geq (1 + \delta)\mu) \leq \frac{e^{\delta \mu}}{(1 + \delta)^{(1+\delta)\mu}}$$

Chernoff Bound (alternate version): Consider independent random variables X_1, \ldots, X_n taking values in $\{0, 1\}$ and let $X = \sum_{i=1}^{n} X_i$. Let $\mu = \mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} X_i]$. For any $\delta \geq 0$

$$\Pr\left(\sum_{i=1}^{n} X_i - \mu \geq \delta \mu\right) \leq 2 \exp\left(-\frac{\delta^2 \mu}{2 + \delta}\right).$$

As δ gets larger and larger, the bound falls off exponentially fast.
Recall that b_i is the number of balls landing in bin i, when we randomly throw n balls into n bins.

- $b_i = \sum_{j=1}^{n} I_{i,j}$ where $I_{i,j} = 1$ with probability $1/n$ and 0 otherwise. $I_{i,1}, \ldots I_{i,n}$ are independent.
- Apply Chernoff bound with $\mu = \mathbb{E}[b_i] = 1$:

$$\Pr[b_i \geq k] \leq \frac{e^k}{(1 + k)^{1+k}}.$$

- For $k \geq \frac{c \log n}{\log \log n}$ we have:

$$\Pr[b_i \geq k] \leq \frac{e^{c \log n}}{(c \log n)^{c \log n}} = \frac{1}{n^{c-o(1)}}$$

Upshot: We recover the right bound for balls into bins.
Bernstein Inequality: Consider independent random variables X_1, \ldots, X_n each with magnitude bounded by $M1$ and let $X = \sum_{i=1}^{n} X_i$. Let $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X] = \sum_{i=1}^{n} \text{Var}[X_i]$. For any $t \geq 0s \geq 0$:

$$
\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq t \right) \leq 2 \exp \left(- \frac{t^2}{2\sigma^2 + \frac{4}{3}Mt} \right).
$$

$$
\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s\sigma \right) \leq 2 \exp \left(- \frac{s^2}{4} \right).
$$

Assume that $M = 1$ and plug in $t = s \cdot \sigma$ for $s \leq \sigma$.

Compare to Chebyshev’s: $\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s\sigma \right) \leq \frac{1}{s^2}$.

• An exponentially stronger dependence on s!
Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded random variables lying $\geq s$ standard deviations from its mean is $\approx \exp\left(-\frac{s^2}{4}\right)$. Can plot this bound for different s:

- Looks like a Gaussian (normal) distribution – can think of Bernstein’s inequality as giving a quantitative version of the central limit theorem.

- The distribution of the sum of bounded independent random variables can be upper bounded with a Gaussian distribution.
Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of *n bounded* independent random variables converges to a Gaussian (normal) distribution as *n* goes to infinity.

- The Gaussian distribution is so important since many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.
Sampling for Approximation

I have an $n \times n$ matrix with entries in $[0, 1]$. I want to estimate the sum of entries. I sample s entries uniformly at random with replacement, take their sum, and multiply it by n^2 / s. How large must s be so that this method returns the correct answer, up to error $\pm \epsilon \cdot n^2$ with probability at least $1 - 1/n$?

(a) $O(n^2)$
(b) $O(n/\epsilon)$
(c) $O(\log n/\epsilon)$
(d) $O(\log n/\epsilon^2)$

Bernstein Inequality: Consider independent random variables X_1, \ldots, X_n each with magnitude bounded by M and let $X = \sum_{i=1}^{n} X_i$. Let $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X] = \sum_{i=1}^{n} \text{Var}[X_i]$. For any $t \geq 0$:

$$
\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq t \right) \leq 2 \exp \left(-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt} \right).
$$
Application: Linear Probing
Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Simple and potentially very efficient – but performance can degrade as the hash table fills up.
Theorem: If the hash table has n inserted items and $m \geq 2n$ buckets, then linear probing requires $O(1)$ expected time per insertion/query.

Definition: For any interval $I \subset [m]$, let $L(I) = |\{x : h(x) \in I\}|$ be the number of items hashed to the interval. We say I is full if $L(I) \geq |I|$.

Which intervals in this table are full?
Analysis via Full Intervals

Claim Let $T(x)$ denote the number of steps required for an insertion/query operation for item x. If $T(x) > k$, there are at least k full intervals of different lengths containing $h(x)$.

Let $I_j = 1$ if $h(x)$ lies in some length-j full interval, $I_j = 0$ otherwise. Operation time for x is can be bounded as $T(x) \leq \sum_{j=1}^{n} I_j$.
Expectation Analysis

\(I_j = 1 \) if \(h(x) \) lies in some length-\(j \) full interval, \(I_j = 0 \) otherwise. Expected operation time for any \(x \) is:

\[
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} \mathbb{E}[I_j].
\]

Observe that \(h(x) \) lies in at most 1 length-1 interval, 2 length-2 intervals, etc. So we can upper bound this expectation by:

\[
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} j \cdot \Pr[\text{any length-} j \text{ interval is full}].
\]

A length-\(j \) interval is full if the number of items hashed into it, \(L(I) \) is at least \(j \). Note that when \(m \geq 2n \), \(\mathbb{E}[L(I)] = j/2 \). Applying a Chernoff bound with \(\delta = 1/2 \), \(\mu = \mathbb{E}[L(I)] = j/2 \):

\[
\Pr[L(I) \geq j] \leq \Pr[|L(I) - \mu| \geq \delta \cdot \mu] \\
\leq 2e^{-\frac{(1/2)^2 \cdot j/2}{2 + 1/2}} = 2e^{-c \cdot j}.
\]
Expected operation time for any x is:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} j \cdot \Pr[\text{any length-}j \text{ interval is full}]
$$

$$
\leq \sum_{j=1}^{n} j \cdot 2e^{-c \cdot j}
$$

$$
= O(1).
$$

This matches the expected operation cost of chaining when $m \geq 2n$. In practice, linear probing is typically much faster.