COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 18
• Problem Set 4 is due Monday 4/22 at 11:59pm.
• No quiz this week.

Office hours on Zoom after class.
Summary

Last Class:

- Leverage score intuition.
- Connection to spectral graph sparsification
- Connection to effective resistances in electrical networks. **Note:** I am not going to finish this full derivation – see Lecture 17 slides if you are interested.
Last Class:

- Leverage score intuition.
- Connection to spectral graph sparsification
- Connection to effective resistances in electrical networks. **Note:** I am not going to finish this full derivation – see Lecture 17 slides if you are interested.

Today:

- New unit: Markov Chains.
- Markov chain based algorithms for 2-SAT and 3-SAT.
• A **discrete time stochastic process** is a collection of random variables X_0, X_1, X_2, \ldots.

• A discrete time stochastic process is a **Markov chain** if it is memoryless:

$$\Pr(X_t = a_t | X_{t-1} = a_{t-1}, \ldots, X_0 = a_0) = \Pr(X_t = a_t | X_{t-1} = a_{t-1}) = p_{a_{t-1}, a_t}.$$

Question: In a Markov chain, is X_t independent of $X_{t-2}, X_{t-3}, \ldots, X_0$?

Flipping coins, X_t is a Markov chain on X_{t-1}:

- Only need condition on X_{t-1}.
- $X_t = \#$ heads up to time t.
- Only X_{t-1}.
- $X_t = X_{t-1} + 1$ w.p. $1/2$.
- $X_t = X_{t-1}$ w.p. $1/2$.
A Markov chain X_0, X_1, \ldots where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$P_{j,k} = \Pr(X_{i+1} = k | X_i = j).$$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.5</td>
<td>.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>.25</td>
<td>.25</td>
<td>.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rows sum to 1.
Transition Matrix

A Markov chain X_0, X_1, \ldots where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$P_{j,k} = \Pr(X_{i+1} = k | X_i = j).$$

Let $q_i \in [0, 1]^{1 \times m}$ be the distribution of X_i. Then $q_{i+1} = q_i P$.

\[
\begin{bmatrix}
0 & .1 & .2 & 0 & .7 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
.5 & .5 & 0 & 0 \\
.25 & .25 & .5 & 0 \\
0 & 1 & 0 & 0 \\
0 & .5 & .5 & 0 \\
\end{bmatrix}
\]
A Markov chain X_0, X_1, \ldots where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$P_{j,k} = \Pr(X_{i+1} = k | X_i = j).$$

Let $q_i \in [0, 1]^{1 \times m}$ be the distribution of X_i. Then $q_{i+1} = q_i P$.

\[
\begin{array}{cccccc}
q_0 & \quad & P & \quad & q_1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
.5 & .5 & 0 & 0 \\
.25 & .25 & .5 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & .5 & .5 & 0 \\
= & & & & .5 & .5 & 0 & 0
\end{array}
\]
A Markov chain X_0, X_1, \ldots where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$P_{j,k} = \Pr(X_{i+1} = k|X_i = j).$$

Let $q_i \in [0, 1]^{1 \times m}$ be the distribution of X_i. Then $q_{i+1} = q_i P$.

\[\begin{array}{ccc}
q_1 & \text{P} & q_2 \\
.5 & .5 & 0 & 0 & .375 & .375 & .25 & 0 \\
.25 & .25 & .5 & 0 & \end{array} \]
Graph View

Often viewed as an underlying state transition graph. Nodes correspond to possible values that each X_i can take.

![Graph View Diagram]

\[
P = \begin{pmatrix}
0.5 & 0.5 & 0 & 0 \\
0.25 & 0.25 & 0.5 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0.5 & 0.5 & 0
\end{pmatrix}
\]
Graph View

Often viewed as an underlying state transition graph. Nodes correspond to possible values that each X_i can take.

The Markov chain is **irreducible** if the underlying graph consists of single strongly connected component.

The graph shows transitions with probabilities as follows:

- From state 1 to state 2: 0.5
- From state 1 to state 4: 0.5
- From state 2 to state 1: 0.5
- From state 2 to state 3: 0.25
- From state 3 to state 2: 0.5
- From state 3 to state 4: 0.25
- From state 4 to state 1: 0.5
- From state 4 to state 2: 0.25
- From state 4 to state 3: 0.5

The transition probability matrix P is:

$$
\begin{pmatrix}
0.5 & 0.5 & 0 & 0 \\
0.25 & 0.25 & 0.5 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0.5 & 0.5 & 0 \\
\end{pmatrix}
$$
Motivating Example: Find a satisfying assignment for a 2-CNF formula with \(n \) variables.

\[
(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2) \land (x_1 \lor \overline{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x}_1)
\]

(= soluble in polynomial time)
Motivating Example: Find a satisfying assignment for a 2-CNF formula with n variables.

$$(x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1)$$

A simple ‘local search’ algorithm:

1. Start with an arbitrary assignment.

2. Repeat $2mn^2$ times, terminating if a satisfying assignment is found:
 - Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.

3. If a valid assignment is not found, return that the formula is unsatisfiable.
Motivating Example: Find a satisfying assignment for a 2-CNF formula with \(n \) variables.

\[(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)\]

A simple ‘local search’ algorithm:

1. Start with an arbitrary assignment.
2. Repeat \(2mn^2 \) times, terminating if a satisfying assignment is found:
 - Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.
3. If a valid assignment is not found, return that the formula is unsatisfiable.

Claim: If the formula is satisfiable, the algorithm finds a satisfying assignment with probability \(\geq 1 - 2^{-m} \).
Randomized 2-SAT Analysis

Fix a satisfying assignment S. Let $X_i \leq n$ be the number of variables that are assigned the same values as in S, at step i.

- $X_{i+1} = X_i \pm 1$ since we flip one variable in an unsatisfied clause.
Randomized 2-SAT Analysis

Fix a satisfying assignment \(S \). Let \(X_i \leq n \) be the number of variables that are assigned the same values as in \(S \), at step \(i \).

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
\end{array}
\]

\(X_i \) is in red.

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

- \(X_{i+1} = X_i \pm 1 \) since we flip one variable in an unsatisfied clause.
- \(\Pr(X_{i+1} = X_i + 1) \geq \frac{1}{12} \)
- \(\Pr(X_{i+1} = X_i - 1) \leq \frac{1}{12} \)

\[
(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)
\]
The number of correctly assigned variables at step i, X_i, obeys

\[
\Pr(X_{i+1} = X_i + 1) \geq \frac{1}{2} \quad \text{and} \quad \Pr(X_{i+1} = X_i - 1) \leq \frac{1}{2}.
\]
Coupling to a Markov Chain

The number of correctly assigned variables at step i, X_i, obeys

$$\Pr(X_{i+1} = X_i + 1) \geq \frac{1}{2} \quad \text{and} \quad \Pr(X_{i+1} = X_i - 1) \leq \frac{1}{2}.$$

Is X_0, X_1, X_2, \ldots a Markov chain? — NO!

It would be a Markov chain if the above conditions were equalities.
Coupling to a Markov Chain

The number of correctly assigned variables at step i, X_i, obeys

$$\Pr(X_{i+1} = X_i + 1) \geq \frac{1}{2} \quad \text{and} \quad \Pr(X_{i+1} = X_i - 1) \leq \frac{1}{2}.$$

Is X_0, X_1, X_2, \ldots a Markov chain?

Define a Markov chain Y_0, Y_1, \ldots such that $Y_0 = X_0$ and:

$$\Pr(Y_{i+1} = 1|Y_i = 0) = 1$$

$$\Pr(Y_{i+1} = j + 1|Y_i = j) = 1/2 \quad \text{for} \ 1 \leq j \leq n - 1$$

$$\Pr(Y_{i+1} = j - 1|Y_i = j) = 1/2 \quad \text{for} \ 1 \leq j \leq n - 1$$

$$\Pr(Y_{i+1} = n|Y_i = n) = 1.$$
The number of correctly assigned variables at step \(i \), \(X_i \), obeys
\[
\Pr(X_{i+1} = X_i + 1) \geq \frac{1}{2} \quad \text{and} \quad \Pr(X_{i+1} = X_i - 1) \leq \frac{1}{2}.
\]

Is \(X_0, X_1, X_2, \ldots \) a Markov chain?

Define a Markov chain \(Y_0, Y_1, \ldots \) such that \(Y_0 = X_0 \) and:
\[
\Pr(Y_{i+1} = 1|Y_i = 0) = 1
\]
\[
\Pr(Y_{i+1} = j + 1|Y_i = j) = \frac{1}{2} \quad \text{for} \ 1 \leq j \leq n - 1
\]
\[
\Pr(Y_{i+1} = j - 1|Y_i = j) = \frac{1}{2} \quad \text{for} \ 1 \leq j \leq n - 1
\]
\[
\Pr(Y_{i+1} = n|Y_i = n) = 1.
\]

• Our algorithm terminates as soon as \(X_i = n \). We expect to reach this point only more slowly with \(Y_i \). So it suffices to argue that \(Y_i = n \) with high probability for large enough \(i \).

• Formally could use a coupling argument (will see later on).
Simple Markov Chain Analysis

Want to bound the expected time required to have $Y_i = n$.

\[
\begin{align*}
 h_j &= \text{expected number of steps to reach } n \text{ when starting at node } j \text{ (i.e., the expected termination time when } j \text{ variables are assigned correctly.)} \\
 h_n &= 0 \\
 h_0 &= h_1 + 1 \\
 h_j &= h_j - \frac{1}{2} + h_{j+1} + \frac{1}{2} \quad \text{for } 1 \leq j \leq n-1
\end{align*}
\]
Simple Markov Chain Analysis

Want to bound the expected time required to have $Y_i = n$.

Let h_j be the expected number of steps to reach n when starting at node j (i.e., the expected termination time when j variables are assigned correctly.)
Simple Markov Chain Analysis

Want to bound the expected time required to have $Y_i = n$.

Let h_j be the expected number of steps to reach n when starting at node j (i.e., the expected termination time when j variables are assigned correctly.)

$$
\begin{cases}
 h_n = 0 \\
 h_0 = h_1 + 1 \\
 h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \text{ for } 1 \leq j \leq n - 1
\end{cases}
$$
Simple Markov Chain Analysis

Claim: \(h_j = h_{j+1} + 2j + 1. \)
Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.
Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

- $h_0 = h_1 + 1$, satisfying the claim in the base case.

\[
\begin{align*}
\text{Rearranging gives:} & & h_j = h_{j+1} + 2j + 1. \\
\text{So in total we have:} & & h_0 = h_1 + 1 = h_2 + 3 + 1 = \ldots = n - 1 \sum_{j=0}^{u} (2j + 1) = \frac{n^2}{2}.
\end{align*}
\]
Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

- $h_0 = h_1 + 1$, satisfying the claim in the base case.

\[
\begin{align*}
 h_j &= \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \\
 h_j &= \frac{h_j}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1 \\
 h_j &= \frac{h_j}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2} \\
 \frac{h_j}{2} &= \frac{h_{j+1}}{2} + j + \frac{1}{2} \\
 h_j &= h_{j+1} + 2j + 1
\end{align*}
\]
Claim: \(h_j = h_{j+1} + 2j + 1 \). Can prove via induction on \(j \).

- \(h_0 = h_1 + 1 \), satisfying the claim in the base case.

\[
h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1
\]

\[
h_j = \frac{h_j}{2} + (j - 1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1
\]

\[
h_j = \frac{h_j}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.
\]

- Rearranging gives: \(h_j = h_{j+1} + 2j + 1 \).
Simple Markov Chain Analysis

Claim: \(h_j = h_{j+1} + 2j + 1 \). Can prove via induction on \(j \).

- \(h_0 = h_1 + 1 \), satisfying the claim in the base case.

\[
\begin{align*}
h_j &= \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \\
h_j &= \frac{h_j}{2} + (j - 1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1 \\
h_j &= \frac{h_j}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.
\end{align*}
\]

- Rearranging gives: \(h_j = h_{j+1} + 2j + 1 \).

So in total we have:

\[
\begin{align*}
\underbrace{h_0}_{1} &= \underbrace{h_1}_{2} + 1 = \underbrace{h_2}_{3} + 3 + 1 = \ldots = \sum_{j=0}^{n-1} (2j + 1) \\
\underbrace{h_1}_{4} &= \underbrace{h_2}_{6} + 3
\end{align*}
\]
Claim: \(h_j = h_{j+1} + 2j + 1 \). Can prove via induction on \(j \).

- \(h_0 = h_1 + 1 \), satisfying the claim in the base case.

\[
\begin{align*}
 h_j &= \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \\
 h_j &= \frac{h_j}{2} + (j - 1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1 \\
 h_j &= \frac{h_j}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.
\end{align*}
\]

- Rearranging gives: \(h_j = h_{j+1} + 2j + 1 \).

So in total we have:

\[
h_0 = h_1 + 1 = h_2 + 3 + 1 = \ldots = \sum_{j=0}^{n-1} (2j + 1) = n^2.
\]
Upshot: Consider the Markov chain Y_0, Y_1, \ldots, and let i^* be the minimum i such $Y_{i^*} = n$. Then $E[i^*] \leq n^2$.
Upshot: Consider the Markov chain Y_0, Y_1, \ldots, and let i^* be the minimum i such $Y_{i^*} = n$. Then $\mathbb{E}[i^*] \leq n^2$.

- Thus, by Markov’s inequality, with probability $\geq 1/2$, our 2-SAT algorithms finds a satisfying assignment within $2n^2$ steps.

$$\Pr(i^* \geq 2n^2) \leq 1/2$$
Simple Markov Chain Analysis

Upshot: Consider the Markov chain Y_0, Y_1, \ldots, and let i^* be the minimum i such $Y_{i^*} = n$. Then $E[i^*] \leq n^2$.

- Thus, by Markov’s inequality, with probability $\geq 1/2$, our 2-SAT algorithms finds a satisfying assignment within $2n^2$ steps.
- Splitting our $2mn^2$ total steps into m periods of $2n^2$ steps each, we fail to find a satisfying assignment in all m periods with probability at most $1/2^m$.

\[\text{Prob at least } 1 - \frac{1}{2^m} \text{ I find sat assign.} \]
More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with n variables.

$$(x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor \bar{x}_3).$$
More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with n variables.

$$(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_3 \lor x_4) \land (x_1 \lor x_2 \lor \overline{x}_3).$$

- 3-SAT is famously NP-hard. **What is the naive deterministic runtime required to solve 3-SAT?**

$2^n \cdot \text{poly}(n)$
3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with n variables.

$$(x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_3 \lor x_4) \land (x_1 \lor x_2 \lor \bar{x}_3).$$

- 3-SAT is famously NP-hard. **What is the naive deterministic runtime required to solve 3-SAT?**
- The current best known runtime is $O(1.307^n)$ [Hansen, Kaplan, Zamir, Zwick, 2019].
- Will see that our simple Markov chain approach gives an $O(1.3334^n)$ time algorithm.
More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with n variables.

\[(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor x_4) \land (x_1 \lor x_2 \lor \overline{x}_3).
\]

- 3-SAT is famously NP-hard. What is the naive deterministic runtime required to solve 3-SAT?
- The current best known runtime is $O(1.307^n)$ [Hansen, Kaplan, Zamir, Zwick, 2019].
- Will see that our simple Markov chain approach gives an $O(1.3334^n)$ time algorithm.
- Note that the exponential time hypothesis conjectures that $O(c^n)$ is needed to solve 3-SAT for some constant $c > 1$. The strong exponential time hypothesis conjectures that for $k \to \infty$, solving k-SAT requires $O(2^n)$ time.
Randomized 3-SAT Algorithm

1. Start with an arbitrary assignment.
2. Repeat m times, terminating if a satisfying assignment is found:
 • Chose an arbitrary unsatisfied clause.
 • Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.
3. If a valid assignment is not found, return that the formula is unsatisfiable.
Randomized 3-SAT Analysis

As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

$$\Pr(X_i = X_{i-1} + 1) \geq \frac{1}{3}$$
$$\Pr(X_i = X_{i-1} - 1) \leq \frac{2}{3}$$

Current: 0 0 0

(\(X_1 \lor X_2 \lor X_3\))

Set: 1 0 0
Randomized 3-SAT Analysis

As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

$$\Pr(X_i = X_{i-1} + 1) \geq$$
$$\Pr(X_i = X_{i-1} - 1) \leq$$

Define the coupled Markov chain Y_0, Y_1, \ldots as before, but with $Y_i = Y_{i-1} + 1$ with probability $1/3$ and $Y_i = Y_{i-1} - 1 = 2/3$.

![Diagram of Markov chain](image)
Randomized 3-SAT Analysis

As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

\[
\begin{align*}
\Pr(X_i = X_{i-1} + 1) &\geq \\
\Pr(X_i = X_{i-1} - 1) &\leq
\end{align*}
\]

Define the coupled Markov chain Y_0, Y_1, \ldots as before, but with $Y_i = Y_{i-1} + 1$ with probability $1/3$ and $Y_i = Y_{i-1} - 1 = 2/3$.

How many steps do you expect are needed to reach $Y_i = n$?

$\text{poly}(n) \Rightarrow P = \text{NP}$

$\text{exp}(n)$
Letting h_j be the expected number of steps to reach n when starting at node j,

$$h_n = 0$$

$$h_0 = h_1 + 1$$

$$h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \leq j \leq n - 1$$
Letting h_j be the expected number of steps to reach n when starting at node j,

\[
\begin{align*}
 h_n &= 0 \\
 h_0 &= h_1 + 1 \\
 h_j &= \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \quad \text{for } 1 \leq j \leq n - 1
\end{align*}
\]

\[2(j-1)\]

- We can prove via induction that $h_j = h_{j+1} + 2^{j+2} - 3$ and in turn, $h_0 = 2^{n+2} - 4 - 3n$.
Randomized 3-SAT Analysis

Letting h_j be the expected number of steps to reach n when starting at node j,

$$h_n = 0$$
$$h_0 = h_1 + 1$$
$$h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \leq j \leq n - 1$$

- We can prove via induction that $h_j = h_{j+1} + 2^{j+2} - 3$ and in turn, $h_0 = 2^{n+2} - 4 - 3n$.
- Thus, in expectation, our algorithm takes at most $\approx 2^{n+2}$ steps to find a satisfying assignment if there is one.
Letting h_j be the expected number of steps to reach n when starting at node j,

\[
\begin{align*}
 h_n &= 0 \\
 h_0 &= h_1 + 1 \\
 h_j &= \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \leq j \leq n - 1
\end{align*}
\]

- We can prove via induction that $h_j = h_{j+1} + 2^{j+2} - 3$ and in turn, $h_0 = 2^{n+2} - 4 - 3n$.
- Thus, in expectation, our algorithm takes at most $\approx 2^{n+2}$ steps to find a satisfying assignment if there is one.
- Is this an interesting result? NO. We already have 2^n in it also.
Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we will have $\mathbb{E}[X_0] = n/2$. With very small, but still non-negligible probability, X_0 will be much larger, and our random walk will be more likely to find a satisfying assignment.
Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we will have $\mathbb{E}[X_0] = n/2$. With very small, but still non-negligible probability, X_0 will be much larger, and our random walk will be more likely to find a satisfying assignment.

Modified Randomized 3-SAT Algorithm:

Repeat m times, terminating if a satisfying assignment is found:

1. Pick a uniform random assignment for the variables.
2. Repeat $3n$ times, terminating if a satisfying assignment is found:
 - Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.

If a valid assignment is not found, return that the formula is unsatisfiable.
Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

$\mathbb{E}(j) = \frac{n}{2}$
Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \leq n$ and since we run the search process for $3n$ steps,

$$q_j = \Pr[X_{3n} = n]$$
$$\geq \Pr[X_{3j} = n]$$
Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \leq n$ and since we run the search process for $3n$ steps,

$$q_j = \Pr[X_{3n} = n]$$

$$\geq \Pr[X_{3j} = n]$$

$$\geq \Pr[\text{take exactly } 2j \text{ steps forward and } j \text{ steps back in } 3j \text{ steps}]$$
Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \leq n$ and since we run the search process for $3n$ steps,

$$q_j = \Pr[X_{3n} = n]$$

$$\geq \Pr[X_{3j} = n]$$

$$\geq \Pr[\text{take exactly } 2j \text{ steps forward and } j \text{ steps back in } 3j \text{ steps}]$$

$$= \binom{3j}{j} \left(\frac{2}{3}\right)^j \cdot \left(\frac{1}{3}\right)^{2j}.$$
Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \leq n$ and since we run the search process for $3n$ steps,

$$q_j = \Pr[X_{3n} = n]$$
$$\geq \Pr[X_{3j} = n]$$
$$\geq \Pr[\text{take exactly } 2j \text{ steps forward and } j \text{ steps back in } 3j \text{ steps}]$$

$$= \binom{3j}{j} \left(\frac{2}{3} \right)^j \cdot \left(\frac{1}{3} \right)^{2j}$$

Via Stirling’s approximation, $\binom{3j}{j} \geq \frac{1}{\sqrt{j}} \cdot \frac{3^{3j-2}}{2^{2j-2}}$, giving:

$$q_j \geq \frac{2^2}{3^2 \sqrt{j}} \cdot \frac{3^{3j}}{2^{2j}} \cdot \frac{2^j}{3^3j} \approx \frac{1}{\sqrt{j} \cdot 2^j} \geq \frac{1}{\sqrt{n} \cdot 2^j}.$$
Our overall probability of success in a single trial is then lower bounded by:

\[q \geq \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j \]
Our overall probability of success in a single trial is then lower bounded by:

\[q \geq \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j \geq \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j} \]
Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower bounded by:

\[
q \geq \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j
\]

\[
\geq \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}
\]

\[
\geq \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^j}
\]
Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower bounded by:

\[q \geq \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j \]

\[\geq \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j} \]

\[\geq \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^j} \]

\[= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2} \right)^n \left(1 + \frac{1}{2} \right)^n \approx \sum_{j=0}^{n} \binom{n}{j} \frac{1}{2^j} \]
Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower bounded by:

$$q \geq \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j$$

$$\geq \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}$$

$$\geq \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^j}$$

$$= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2}\right)^n = \frac{1}{\sqrt{n}} \cdot \left(\frac{3}{4}\right)^n.$$
Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower bounded by:

\[q \geq \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j \]

\[\geq \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j} \]

\[\geq \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^j} \]

\[= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2} \right)^n = \frac{1}{\sqrt{n}} \cdot \left(\frac{3}{4} \right)^n. \]

Thus, if we repeat for \(m = O \left(\sqrt{n} \cdot \left(\frac{4}{3} \right)^n \right) = O(1.33334^n) \) trials, with very high probability, we will find a satisfying assignment if there is one.