COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 10
• Problem Set 2 is due tonight at 11:59pm.
• One page project proposal due Tuesday 3/12.
• Quiz due Monday released after class.
Summary

Last Time:

- Count sketch for ℓ_2 heavy-hitters – estimate all entries of a vector x to error $\pm \epsilon \|x\|_2$ from a linear sketch of dimension $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$.

Analysis via linearity of expectation, variance, Chebyshev’s inequality and median trick.

Today:

- Approximate matrix multiplication via importance sampling.
- Application to fast low-rank approximation via sampling.
Summary

Last Time:

• Count sketch for ℓ_2 heavy-hitters – estimate all entries of a vector x to error $\pm \epsilon \|x\|_2$ from a linear sketch of dimension $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$.

• Analysis via linearity of expectation, variance, Chebyshev’s inequality and median trick.

Today:

• Approximate matrix multiplication via importance sampling.

• Application to fast low-rank approximation via sampling.
Approximate Matrix Multiplication
Given $A, B \in \mathbb{R}^{n \times n}$ would like to compute $C = AB$. Requires n^ω time where $\omega \approx 2.373$ in theory.

- We’ll see how to compute an approximation in $O(n^2)$ time via a simple sampling approach.
- This is one of the fundamental building blocks of randomized numerical linear algebra.
- E.g. later in class we will use it to develop a fast algorithm for low-rank approximation.
Inner Product View: \([AB]_{ij} = \langle A_{i,:}, B_{j,:} \rangle = \sum_{k=1}^{n} A_{ik} \cdot B_{kj}\).

Outer Product View: Observe that \(C_k = A_{:,k}B_{k,:}\) is an \(n \times n\) matrix with \([C_k]_{ij} = A_{jk} \cdot B_{kj}\). So \(AB = \sum_{k=1}^{n} A_{:,k}B_{k,:}\).

Basic Idea: Approximate \(AB\) by sampling terms of this sum.
Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_1, \ldots, p_n with $p_i \geq 0$ and $\sum_{i=1}^{n} p_i = 1$.
- Select $i_1, \ldots, i_t \in [n]$ independently, according to the distribution $\Pr[i_j = k] = p_k$.
- Let $\overline{C} = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{i_j}} \cdot A_{i_j, i_j} B_{i_j, \cdot}$

\[
\mathbb{E} \overline{C} = \overline{C} = AB
\]
Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_1, \ldots, p_n with $p_i \geq 0$ and $\sum_{[n]} p_i = 1$.
- Select $i_1, \ldots, i_t \in [n]$ independently, according to the distribution $\Pr[i_j = k] = p_k$.
- Let $\bar{C} = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{i_j}} \cdot A_{i_j}B_{i_j}$.

Claim 1: $E[\bar{C}] = AB$
Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

• Fix sampling probabilities p_1, \ldots, p_n with $p_i \geq 0$ and $\sum_{[n]} p_i = 1$.
• Select $i_1, \ldots, i_t \in [n]$ independently, according to the distribution $\Pr[i_j = k] = p_k$.
• Let $\overline{C} = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{i_j}} \cdot A_{i_j} B_{i_j} .$

Claim 1: $\mathbb{E}[\overline{C}] = AB$

$$\mathbb{E}[\overline{C}] = \frac{1}{t} \sum_{j=1}^{t} \mathbb{E} \left[\frac{1}{p_{i_j}} \cdot A_{i_j} B_{i_j} . \right]$$
Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_1, \ldots, p_n with $p_i \geq 0$ and $\sum_{[n]} p_i = 1$.
- Select $i_1, \ldots, i_t \in [n]$ independently, according to the distribution $\Pr[i_j = k] = p_k$.
- Let $\overline{C} = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{i_j}} \cdot A_{:,i_j} B_{i_j,:}$.

Claim 1: $\mathbb{E}[\overline{C}] = AB$

$$\mathbb{E}[\overline{C}] = \frac{1}{t} \sum_{j=1}^{t} \mathbb{E} \left[\frac{1}{p_{i_j}} \cdot A_{:,i_j} B_{i_j,:} \right] = \frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_k \cdot \frac{1}{p_k} \cdot A_{:,k} B_{k,:}$$

$$= \frac{1}{t} \sum_{j=1}^{t} AB = AB \quad \checkmark$$
Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_1, \ldots, p_n with $p_i \geq 0$ and $\sum_{i=1}^{n} p_i = 1$.
- Select $i_1, \ldots, i_t \in [n]$ independently, according to the distribution $\Pr[i_j = k] = p_k$.
- Let $\bar{C} = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{i_j}} \cdot A_{i_j}B_{i_j}$.

Claim 1: $\mathbb{E}[\bar{C}] = AB$

$$\mathbb{E}[\bar{C}] = \frac{1}{t} \sum_{j=1}^{t} \mathbb{E} \left[\frac{1}{p_{i_j}} \cdot A_{i_j}B_{i_j} \right] = \frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_k \cdot \frac{1}{p_k} \cdot A_{k}B_{k} = \frac{1}{t} \sum_{j=1}^{t} AB$$
Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_1, \ldots, p_n with $p_i \geq 0$ and $\sum_{[n]} p_i = 1$.
- Select $i_1, \ldots, i_t \in [n]$ independently, according to the distribution $\Pr[i_j = k] = p_k$.
- Let $\overline{C} = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{i_j}} \cdot A_{:,i_j} B_{i_j,:}$.

Claim 1: $\mathbb{E}[\overline{C}] = AB$

$$
\mathbb{E}[\overline{C}] = \frac{1}{t} \sum_{j=1}^{t} \mathbb{E} \left[\frac{1}{p_{i_j}} \cdot A_{:,i_j} B_{i_j,:) \right] = \frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_k \cdot \frac{1}{p_k} \cdot A_{:,k} B_{k,:} = \frac{1}{t} \sum_{j=1}^{t} AB = AB
$$
Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities \(p_1, \ldots, p_n \) with \(p_i \geq 0 \) and \(\sum_{[n]} p_i = 1 \).
- Select \(i_1, \ldots, i_t \in [n] \) independently, according to the distribution \(\Pr[i_j = k] = p_k \).
- Let \(\bar{C} = \frac{1}{t} \sum_{j=1}^{t} \frac{1}{p_{i_j}} \cdot A_{:,i_j}B_{i_j,:} \).

Claim 1: \(\mathbb{E}[\bar{C}] = AB \)

\[
\mathbb{E}[\bar{C}] = \frac{1}{t} \sum_{j=1}^{t} \mathbb{E} \left[\frac{1}{p_{i_j}} \cdot A_{:,i_j}B_{i_j,:} \right] = \frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_k \cdot \frac{1}{p_{i_j}} \cdot A_{:,k}B_{k,:} = \frac{1}{t} \sum_{j=1}^{t} AB = AB
\]

Weighting by \(\frac{1}{p_{i_j}} \) keeps the expectation correct. Key idea behind importance sampling based methods.
Claim 2: $\mathbb{E}[\|AB - C\|_F^2] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A_{:,m}\|_2^2 \cdot \|B_{m,:}\|_2^2}{p_m}$.

Good exercise – uses linearity of variance. I may ask you to prove it on the next problem set.

$$\mathbb{E}[(AB)_{ij} - \bar{C}_{ij}]^2 = \sum_i \text{Var}(\bar{C}_{ij})$$
Optimal Sampling Probabilities

Claim 2: \(\mathbb{E}[\|AB - \bar{C}\|^2_F] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A_{:,m}\|^2 \cdot \|B_{m,:}\|^2}{p_m}. \)

Good exercise – uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set \(p_1, \ldots, p_n \) to minimize this error?

\[
\frac{\partial V}{\partial p_m} = -\|A_{:,m}\|^2 \cdot \|B_{m,:}\|^2 \quad \text{for } m = 1, \ldots, n
\]

Want:

\[
\frac{\partial V}{p_1} \quad \frac{\partial V}{p_2} \quad \ldots \quad \frac{\partial V}{p_n}
\]

So how should I set \(p_i \)?

\[
p_i' = p_i - \epsilon
\]

\[
p_j' = p_j + \epsilon
\]

where

\[
p_m' = \frac{\|A_{:,m}\|^2 \cdot \|B_{m,:}\|^2}{\sum_{j=1}^{n} \|A_{:,j}\|^2 \cdot \|B_{j,:}\|^2}
\]
Claim 2: $\mathbb{E}[\|AB - \overline{C}\|^2_F] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2}{p_m}$.

Good exercise – uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set p_1, \ldots, p_n to minimize this error?

Set $p_m = \frac{\|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2}{\sum_{k=1}^{n} \|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2}$, giving:

$$\mathbb{E}[\|AB - \overline{C}\|^2_F] \leq \frac{1}{t} \sum_{m=1}^{n} \|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2 \cdot \left(\sum_{k=1}^{n} \|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2 \right)$$
Claim 2: \(\mathbb{E}[\|AB - \bar{C}\|_F^2] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A_{:,m}\|_2^2 \cdot \|B_{m,:}\|_2}{p_m} \). \(\text{Var}(\bar{C}) \leq \mathbb{E}\bar{C}^2\)

Good exercise – uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set \(p_1, \ldots, p_n\) to minimize this error?

Set \(p_m = \frac{\|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2}{\sum_{k=1}^{n} \|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2}\), giving:

\[
\mathbb{E}[\|AB - \bar{C}\|_F^2] \leq \frac{1}{t} \sum_{m=1}^{n} \|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2 \cdot \left(\sum_{k=1}^{n} \|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2 \right)
\]

\[
= \frac{1}{t} \left(\sum_{m=1}^{n} \|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2 \right)^2
\]

\[
\left[\begin{array}{c} A \end{array} \right] \left[\begin{array}{c} B \end{array} \right] \quad \bar{C} = \frac{1}{t} \sum_{j=1}^{t} \frac{1}{p_j} \frac{1}{p_j} A_{ij} B_{ij}
\]

\[
\left[\begin{array}{c} 1 \end{array} \right] \left[\begin{array}{c} \vdots \end{array} \right] \quad \frac{1}{t} \sum_{j=1}^{t} \frac{1}{p_j} = \mathbb{E} \left[\|AB - \bar{C}\|_F^2 \right] = \mathbb{E}\bar{C}^2
\]
Optimal Sampling Probabilities

Claim 2: \(\mathbb{E}[\|AB - \overline{C}\|^2_F] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A_{:,m}\|^2 \cdot \|B_{m,:}\|^2}{p_m} \).

Good exercise – uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set \(p_1, \ldots, p_n \) to minimize this error?

Set \(p_m = \frac{\|A_{:,m}\|^2 \cdot \|B_{m,:}\|^2}{\sum_{k=1}^{n} \|A_{:,k}\|^2 \cdot \|B_{k,:}\|^2} \), giving:

\[
\mathbb{E}[\|AB - \overline{C}\|^2_F] \leq \frac{1}{t} \sum_{m=1}^{n} \|A_{:,m}\|^2 \cdot \|B_{m,:}\|^2 \cdot \left(\sum_{k=1}^{n} \|A_{:,k}\|^2 \cdot \|B_{k,:}\|^2 \right) \\
= \frac{1}{t} \left(\sum_{m=1}^{n} \|A_{:,m}\|^2 \cdot \|B_{m,:}\|^2 \right)^2
\]

By the Cauchy-Schwarz inequality,
\[
\sum_{m=1}^{n} \|A_{:,m}\|^2 \cdot \|B_{m,:}\|^2 \leq \sqrt{\sum_{m=1}^{n} \|A_{:,m}\|^2} \cdot \sqrt{\sum_{m=1}^{n} \|B_{m,:}\|^2} = \|A\|_F \cdot \|B\|_F
\]
Claim 2: \(\mathbb{E}[\|AB - C\|_F^2] \leq \frac{1}{t} \sum_{m=1}^{n} \frac{\|A_{:,m}\|_2^2 \|B_{m,:}\|_2^2}{p_m} \).

Good exercise – uses linearity of variance. I may ask you to prove it on the next problem set.

Question: How should we set \(p_1, \ldots, p_n \) to minimize this error?

Set \(p_m = \frac{\|A_{:,m}\|_2 \|B_{m,:}\|_2}{\sum_{k=1}^{n} \|A_{:,k}\|_2 \|B_{k,:}\|_2} \), giving:

\[
\mathbb{E}[\|AB - C\|_F^2] \leq \frac{1}{t} \sum_{m=1}^{n} \|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2 \cdot \left(\sum_{k=1}^{n} \|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2 \right)^2
\]

By the Cauchy-Schwarz inequality,
\[
\sum_{m=1}^{n} \|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2 \leq \sqrt{\sum_{m=1}^{n} \|A_{:,k}\|_2^2} \cdot \sqrt{\sum_{m=1}^{n} \|B_{k,:}\|_2^2} = \|A\|_F \cdot \|B\|_F
\]

Overall: \(\mathbb{E}[\|AB - C\|_F^2] \leq \frac{\|A\|_F^2 \cdot \|B\|_F^2}{t} \).
So far: With optimal sampling probabilities, approximate matrix multiplication satisfies $\mathbb{E}[\|AB - \overline{C}\|_F^2] \leq \frac{\|A\|_F^2 \cdot \|B\|_F^2}{t}$.
So far: With optimal sampling probabilities, approximate matrix multiplication satisfies $\mathbb{E}[\|AB - \overline{C}\|^2_F] \leq \frac{\|A\|^2_F \cdot \|B\|^2_F}{t}$.

• Setting $t = \frac{1}{\epsilon^2 \sqrt{\delta}}$, by Markov’s inequality:

$$\Pr[\|AB - \overline{C}\|_F \geq \epsilon \cdot \|A\|_F \cdot \|B\|_F] \leq \delta.$$
So far: With optimal sampling probabilities, approximate matrix multiplication satisfies $\mathbb{E}[\|AB - \overline{C}\|_F^2] \leq \frac{\|A\|_F^2 \cdot \|B\|_F^2}{t}$.

- Setting $t = \frac{1}{\epsilon^2 \sqrt{\delta}}$, by Markov’s inequality:

 $$\Pr[\|AB - \overline{C}\|_F \geq \epsilon \cdot \|A\|_F \cdot \|B\|_F] \leq \delta.$$

- Note: It's not so obvious how to improve the dependence on δ here, but it can be done using more advanced concentration inequalities. — Mahoney’s book

$$t = \frac{\log(1/\delta)}{\epsilon^2}$$
Upshot: Sampling $t = O(1/\epsilon^2)$ columns/rows of A, B with probabilities proportional to $\|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2$ yields, with good probability, an approximation \overline{C} with

$$\|AB - \overline{C}\|_F \leq \epsilon \cdot \|A\|_F \cdot \|B\|_F.$$
Upshot: Sampling $t = O(1/\epsilon^2)$ columns/rows of A, B with probabilities proportional to $\|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2$ yields, with good probability, an approximation \bar{C} with

$$\|AB - \bar{C}\|_F \leq \epsilon \cdot \|A\|_F \cdot \|B\|_F.$$

- Probabilities take $O(n^2)$ time to compute. After sampling, \bar{C} takes $O(t \cdot n^2)$ time to compute.
Upshot: Sampling $t = O(1/\epsilon^2)$ columns/rows of A, B with probabilities proportional to $\|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2$ yields, with good probability, an approximation \overline{C} with

$$\|AB - \overline{C}\|_F \leq \epsilon \cdot \|A\|_F \cdot \|B\|_F.$$

• Probabilities take $O(n^2)$ time to compute. After sampling, \overline{C} takes $O(t \cdot n^2)$ time to compute.

• Can derive related bounds when probabilities are just approximate – i.e. $p_k \geq \beta \cdot \frac{\|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2}{\sum_{m=1}^n \|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2}$ for some $\beta > 0.$
Upshot: Sampling $t = O(1/\epsilon^2)$ columns/rows of A, B with probabilities proportional to $\|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2$ yields, with good probability, an approximation \overline{C} with

$$\|AB - \overline{C}\|_F \leq \epsilon \cdot \|A\|_F \cdot \|B\|_F.$$

- Probabilities take $O(n^2)$ time to compute. After sampling, \overline{C} takes $O(t \cdot n^2)$ time to compute.

- Can derive related bounds when probabilities are just approximate – i.e. $p_k \geq \beta \cdot \frac{\|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2}{\sum_{m=1}^{n} \|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2}$ for some $\beta > 0$.

- Can also give bounds on $\|AB - \overline{C}\|_2$, but analysis is much more complex. Will see tools in the coming weeks that let us do this.

Matrix concentration
Upshot: Sampling $t = O(1/\epsilon^2)$ columns/rows of A, B with probabilities proportional to $\|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2$ yields, with good probability, an approximation \overline{C} with

$$\|AB - \overline{C}\|_F \leq \epsilon \cdot \|A\|_F \cdot \|B\|_F.$$

- Probabilities take $O(n^2)$ time to compute. After sampling, \overline{C} takes $O(t \cdot n^2)$ time to compute.

- Can derive related bounds when probabilities are just approximate – i.e. $p_k \geq \beta \cdot \frac{\|A_{:,k}\|_2 \cdot \|B_{k,:}\|_2}{\sum_{m=1}^{n} \|A_{:,m}\|_2 \cdot \|B_{m,:}\|_2}$ for some $\beta > 0$.

- Can also give bounds on $\|AB - \overline{C}\|_2$, but analysis is much more complex. Will see tools in the coming weeks that let us do this.

- A classic example of using weighted importance sampling to decrease variance and in turn, sample complexity.
Think-Pair-Share 1: Ideally we would have relative error, $\|AB - \bar{C}\|_F \leq \epsilon \|AB\|_F$. Could we get this via a tighter analysis or better sampling distribution?

to achieve error $\epsilon \|AB\|_F$ I need to know if $AB = 0$ or not.
Randomized Low-Rank approximation
Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min(n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$\|A - ZZ^T A\|_F = \min_{Z:Z^T Z = I} \|A - ZZ^T A\|_F.$$

Why is $\text{rank}(ZZ^T A) \leq k$?

Why does it suffice to consider low-rank approximations of this form?

For any B with $\text{rank}(B) = k$, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal basis for B's column span. Then

$$\|A - ZZ^T A\|_F \leq \|A - B\|_F.$$ So

$$\min_{Z:Z^T Z = I} \|A - ZZ^T A\|_F = \min_B \|A - B\|_F.$$ How would one compute the optimal basis Z?

Compute the top k left singular vectors of A, which requires $O(nd^2)$ time, or $O(ndk)$ time for a high accuracy approximation with an iterative method.

LSA

PCA

one of the main ways of approximating matrices
Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min(n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$\|A - ZZ^T A\|_F = \min_{Z: Z^T Z = I} \|A - ZZ^T A\|_F.$$

Why is rank($ZZ^T A$) $\leq k$?

Why does it suffice to consider low-rank approximations of this form?

For any B with rank(B) = k, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal basis for B's column span. Then

$$\|A - ZZ^T A\|_F \leq \|A - B\|_F.$$

So

$$\min_{Z: Z^T Z = I} \|A - ZZ^T A\|_F = \min_{\text{rank } B = k} \|A - B\|_F.$$

How would one compute the optimal basis Z?

Compute the top k left singular vectors of A, which requires $O(n d^2)$ time, or $O(n d k)$ time for a high accuracy approximation with an iterative method.
Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min(n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\|A - ZZ^T A\|_F = \min_{Z: Z^T Z = I} \|A - ZZ^T A\|_F.
$$

Why is $\text{rank}(ZZ^T A) \leq k$?

Why does it suffice to consider low-rank approximations of this form?

For any B with $\text{rank}(B) = k$, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal basis for B's column span. Then

$$
\|A - ZZ^T A\|_F \leq \|A - B\|_F.
$$

So

$$
\min_{Z: Z^T Z = I} \|A - ZZ^T A\|_F = \min_B \|A - B\|_F.
$$

How would one compute the optimal basis Z?

Compute the top k left singular vectors of A, which requires $O(nd^2)$ time, or $O(ndk)$ time for a high accuracy approximation with an iterative method.
Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min(n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$\|A - ZZ^T A\|_F = \min_{Z: Z^T Z = I} \|A - ZZ^T A\|_F.$$

Why is $\text{rank}(ZZ^T A) \leq k$?

Why does it suffice to consider low-rank approximations of this form?
Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min(n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$\|A - ZZ^T A\|_F = \min_{Z: Z^T Z = I} \|A - ZZ^T A\|_F.$$

Why is $\text{rank}(ZZ^T A) \leq k$?

Why does it suffice to consider low-rank approximations of this form? For any B with $\text{rank}(B) = k$, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal basis for B's column span. Then $\|A - ZZ^T A\|_F \leq \|A - B\|_F$. So

$$\min_{Z: Z^T Z = I} \|A - ZZ^T A\|_F = \min_{B: \text{rank} B = k} \|A - B\|_F.$$
Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min(n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\|A - ZZ^T A\|_F = \min_{Z:Z^TZ=I} \|A - ZZ^T A\|_F.
$$

Why is $\text{rank}(ZZ^T A) \leq k$?

Why does it suffice to consider low-rank approximations of this form? For any B with $\text{rank}(B) = k$, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal basis for B’s column span. Then $\|A - ZZ^T A\|_F \leq \|A - B\|_F$. So

$$
\min_{Z:Z^TZ=I} \|A - ZZ^T A\|_F = \min_{B: \text{rank } B=k} \|A - B\|_F.
$$

How would one compute the optimal basis Z?

- Compute the top k left singular vectors of A, which requires $O(nd^2)$ time, or $O(ndk)$ time for a high accuracy approximation with an iterative method.
Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min(n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$\|A - ZZ^T A\|_F = \min_{Z:Z^T Z = I} \|A - ZZ^T A\|_F.$$

Why is $\text{rank}(ZZ^T A) \leq k$?

Why does it suffice to consider low-rank approximations of this form? For any B with $\text{rank}(B) = k$, let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal basis for B's column span. Then $\|A - ZZ^T A\|_F \leq \|A - B\|_F$. So

$$\min_{Z:Z^T Z = I} \|A - ZZ^T A\|_F = \min_{B: \text{rank } B = k} \|A - B\|_F.$$

How would one compute the optimal basis Z? Compute the top k left singular vectors of A, which requires $O(nd^2)$ time, or $O(ndk)$ time for a high accuracy approximation with an iterative method.

$O(nd + nk^2)$
We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in $O(nd + nk^2)$ time.
We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in $O(nd + nk^2)$ time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities p_1, \ldots, p_n with $p_i = \frac{\|A_{:,i}\|_2^2}{\|A\|_F^2}$.
- Select $i_1, \ldots, i_t \in [n]$ independently, according to the distribution $\Pr[i_j = k] = p_k$ for sample size $t \geq k$.
- Let $C = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{\sqrt{p_{i_j}}} \cdot A_{:,i_j}$.
- Let $\bar{Z} \in \mathbb{R}^{n \times k}$ consist of the top k left singular vectors of C.

![Diagram](image.png)
Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in \(O(nd + nk^2) \) time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities \(p_1, \ldots, p_n \) with \(p_i = \frac{\|A_{:,i}\|_2^2}{\|A\|_F^2} \).
- Select \(i_1, \ldots, i_t \in [n] \) independently, according to the distribution \(\Pr[i_j = k] = p_k \) for sample size \(t \geq k \).
- Let \(C = \frac{1}{t} \sum_{j=1}^{t} \frac{1}{\sqrt{p_{i_j}}} A_{:,i_j} \cdot \frac{1}{t} \begin{bmatrix} A_{i_1,1} & A_{i_1,2} & \cdots & A_{i_1,t} \\ \frac{1}{\sqrt{p_{i_2}}} & \frac{1}{\sqrt{p_{i_2}}} & \cdots & \frac{1}{\sqrt{p_{i_2}}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{p_{i_t}}} & \frac{1}{\sqrt{p_{i_t}}} & \cdots & \frac{1}{\sqrt{p_{i_t}}} \end{bmatrix} \).
- Let \(Z \in \mathbb{R}^{n \times k} \) consist of the top \(k \) left singular vectors of \(C \).

Will use that \(CC^T \) is a good approximation to the matrix product \(AA^T \).
Sampling Based Algorithm

A sketch-and-solve approach is demonstrated in the diagram. The process starts with a matrix A of dimensions $n \times d$, which is sketched to produce a matrix C with dimensions $n \times t$. Finally, C is solved to obtain a matrix \overline{Z} of dimensions $n \times k$. The text "sketch and solve" highlights the key steps in this algorithm.
The linear time low-rank approximation algorithm run with $t = \frac{k}{\epsilon^2 \sqrt{\delta}}$ samples outputs $\tilde{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability at least $1 - \delta$:

$$\|A - \tilde{Z}\tilde{Z}^T A\|_F^2 \leq \min_{Z:Z^T Z = I} \|A - ZZ^T A\|_F^2 + 2\epsilon \|A\|_F^2.$$
Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with $t = \frac{k}{\epsilon^2 \cdot \sqrt{\delta}}$ samples outputs $\mathbf{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability at least $1 - \delta$:

$$\|A - \mathbf{Z} \mathbf{Z}^T A\|_F^2 \leq \min_{Z: Z^T Z = I} \|A - ZZ^T A\|_F^2 + 2\epsilon \|A\|_F^2.$$

Key Idea: By the approximate matrix multiplication result applied to the matrix product AA^T, with probability $\geq 1 - \delta$,

$$\|AA^T - CC^T\|_F \leq \frac{\epsilon}{\sqrt{k}} \cdot \|A\|_F \cdot \|A^T\|_F = \frac{\epsilon}{\sqrt{k}} \|A\|_F^2.$$

\[
\sum_{j=1}^{t} \mathbf{C}_{ij} \cdot \mathbf{C}^T_{ij} = \frac{1}{t} \sum_{j=1}^{t} \frac{\mathbf{p}_{ij}}{\sqrt{\rho_{ij}}} \cdot \frac{\mathbf{p}_{ij}^T}{\sqrt{\rho_{ij}}} = \frac{1}{t} \sum_{j=1}^{t} \frac{1}{\sqrt{\rho_{ij}}} \mathbf{A}_{ij} \mathbf{A}_{ij}^T = \mathbf{A} \mathbf{m} \mathbf{m}^T
\]
Theorem

The linear time low-rank approximation algorithm run with
\(t = \frac{k}{\epsilon^2 \cdot \sqrt{\delta}} \) samples outputs \(\bar{Z} \in \mathbb{R}^{n \times k} \) satisfying with probability at least \(1 - \delta \):

\[
\| A - \bar{Z} \bar{Z}^T A \|_F^2 \leq \min_{Z:Z^TZ=I} \| A - ZZ^T A \|_F^2 + 2\epsilon \| A \|_F^2.
\]

Key Idea: By the approximate matrix multiplication result applied to the matrix product \(AA^T \), with probability \(\geq 1 - \delta \),

\[
\| AA^T - CC^T \|_F \leq \frac{\epsilon}{\sqrt{k}} \cdot \| A \|_F \cdot \| A^T \|_F = \frac{\epsilon}{\sqrt{k}} \| A \|_F^2.
\]

Since \(CC^T \) is close to \(AA^T \), the top eigenvectors of these matrices (i.e. the top left singular vectors of \(A \) and \(C \) will not be too different.) So \(\bar{Z} \) can be used in place of the top left singular vectors of \(A \) to give a near optimal approximation.
Formal Analysis

Let $Z_\ast \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A – i.e. $Z_\ast = \arg\min ||A - ZZ^TA||_F^2$. Similarly, $\bar{Z} = \arg\min ||C - ZZ^TC||_F^2$.
Formal Analysis

Let $Z_* \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A – i.e. $Z_* = \arg \min \|A - ZZ^T A\|_F^2$. Similarly, $\bar{Z} = \arg \min \|C - ZZ^T C\|_F^2$.

Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$\|B - ZZ^T B\|_F^2 = \text{tr}(BB^T) - \text{tr}(Z^T BB^T Z).$$

$$\|A\|_F^2 = \text{tr}(AA^T)$$

$$\|B - Z\|_F^2 = \text{tr}(B-BZ)^2 = \text{tr}(BB^T - ZZ^T BB^T - BB^T ZZ + ZZ^T BB^T Z)$$

$$= \text{tr}(BB^T) + \text{tr}(ZZ^T BB^T Z) - \text{tr}(Z^T BB^T Z) - \text{tr}(ZZ^T BB^T Z)$$

$$+ \text{tr}(BB^T) - \text{tr}(ZZ^T BB^T Z) + \text{tr}(ZZ^T BB^T Z)$$

$$+ \text{tr}(BB^T) - \text{tr}(Z^T BB^T Z)$$

$$+ \text{tr}(BB^T) - \text{tr}(Z^T BB^T Z)$$

15
Formal Analysis

Let $Z_* \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A – i.e. $Z_* = \arg \min \|A - ZZ^T A\|_F^2$. Similarly, $\bar{Z} = \arg \min \|C - ZZ^T C\|_F^2$.

Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$\|B - ZZ^T B\|_F^2 = \text{tr}(BB^T) - \text{tr}(Z^T BB^T Z).$$

Claim 2: If $\|AA^T - CC^T\|_F \leq \frac{\epsilon}{\sqrt{k}} \|A\|_F^2$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}$,

$$\text{tr}(Z^T (AA^T - CC^T) Z) \leq \epsilon \|A\|_F^2.$$
Let $Z_* \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A – i.e. $Z_* = \arg \min \|A - ZZ^T A\|_F^2$. Similarly, $\bar{Z} = \arg \min \|C - ZZ^T C\|_F^2$.

Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$\|B - ZZ^T B\|_F^2 = \text{tr}(BB^T) - \text{tr}(Z^TBB^TZ).$$

Claim 2: If $\|AA^T - CC^T\|_F \leq \frac{\epsilon}{\sqrt{k}} \|A\|_F^2$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}$, $\text{tr}(Z^T(AA^T - CC^T)Z) \leq \epsilon \|A\|_F^2$.

Proof from claims:
Formal Analysis

Let $Z_\ast \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A – i.e. $Z_\ast = \arg \min \|A - ZZ^T A\|_F^2$. Similarly, $\bar{Z} = \arg \min \|C - ZZ^T C\|_F^2$.

Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$\|B - ZZ^T B\|_F^2 = \text{tr}(BB^T) - \text{tr}(Z^T BB^T Z).$$

Claim 2: If $\|AA^T - CC^T\|_F \leq \frac{\epsilon}{\sqrt{k}} \|A\|_F^2$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}$, $\text{tr}(Z^T (AA^T - CC^T)Z) \leq \epsilon \|A\|_F^2$.

Proof from claims:

$$\|C - ZZ^T C\|_F^2 \leq \|C - Z_\ast Z_\ast^T C\|_F^2 \implies \text{tr}(\bar{Z}^T CC^T \bar{Z}) \geq \text{tr}(Z_\ast^T CC^T Z_\ast)$$
Formal Analysis

Let $Z_* \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A – i.e. $Z_* = \arg \min \|A - ZZ^TA\|_F^2$. Similarly, $\bar{Z} = \arg \min \|C - ZZ^TC\|_F^2$.

Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\|B - ZZ^TB\|_F^2 = \text{tr}(BB^T) - \text{tr}(Z^TBB^TZ).
$$

Claim 2: If $\|AA^T - CC^T\|_F \leq \frac{\epsilon}{\sqrt{k}} \|A\|_F^2$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}$, $\text{tr}(Z^T(AA^T - CC^T)Z) \leq \epsilon \|A\|_F^2$.

Proof from claims:

$$
\|C - ZZ^TC\|_F^2 \leq \|C - Z_*Z_*^TC\|_F^2 \implies \text{tr}(\bar{Z}^TCC^T\bar{Z}) \geq \text{tr}(Z_*^TCC^TZ_*)
$$

$$
\implies \text{tr}(\bar{Z}^TA^T\bar{Z}) \geq \text{tr}(Z_*^TA^TZ_*) - 2\epsilon \|A\|_F^2
$$
Formal Analysis

Let \(Z_* \in \mathbb{R}^{n \times k} \) contain the top left singular vectors of \(A \) – i.e. \(Z_* = \arg \min ||A - ZZ^TA||_F^2 \). Similarly, \(\bar{Z} = \arg \min ||C - ZZ^TC||_F^2 \).

Claim 1: For any orthonormal \(Z \in \mathbb{R}^{n \times k} \), and any matrix \(B \),

\[
||B - ZZ^TB||_F^2 = \text{tr}(BB^T) - \text{tr}(Z^TBB^TZ).
\]

Claim 2: If \(||AA^T - CC^T||_F \leq \frac{\epsilon}{\sqrt{k}} ||A||_F^2 \), then for any orthonormal \(Z \in \mathbb{R}^{n \times k} \), \(\text{tr}(Z^T(AA^T - CC^T)Z) \leq \epsilon ||A||_F^2 \).

Proof from claims:

\[
||C - ZZ^TC||_F^2 \leq ||C - Z_*Z_*^TC||_F^2 \implies \text{tr}(\bar{Z}^TCC^T\bar{Z}) \geq \text{tr}(Z_*^TCC^TZ_*)
\]

\[
\implies \text{tr}(\bar{Z}^TAA^T\bar{Z}) \geq \text{tr}(Z_*^TAA^TZ_*) - 2\epsilon ||A||_F^2
\]

\[
\implies ||A - ZZ^TA||_F^2 \leq ||A - Z_*Z_*^TA||_F^2 + 2\epsilon ||A||_F^2.
\]