
COMPSCI :4ࠀ5 Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Spring .ࠅࠁ߿ࠁ
Lecture ࠂ

ࠀ

Logistics

• Problem Set ࠀ was posted on Friday (see Assignments Tab on
course webpage) and is due Friday ߿ࠁ/ࠁ at .59pm:ࠀࠀ

• The ‘Challenge Problems’ are optional.

• On the quiz many number of people cited concerns about their
probability/stats background. We will be going over background
material for the next few classes, so try to stay on top of things
these first few weeks, and you should be ok.

• For linear algebra you have time to review – we will only use it
after the first midterm.

• Stop by office hours for probability review, to go over material
from lecture, etc. I also highly recommend the exercises in
Foundations of Data Science and Probability and Computing.

• It is common to not catch everything in lecture. I strongly
encourage going back to the slides to review, and to interrupt
with questions during class. ࠁ

Content Overview

Last Class:

• Linearity of variance.
• Markov’s inequality: the most fundamental concentration
bound. Pr(X → t · E[X]) ≤ .t/ࠀ

• Algorithmic applications of Markov’s inequality, linearity of
expectation, and indicator random variables:

• Counting collisions to estimate CAPTCHA database size.
• Analysis of hash tables with random hash functions.
• Collisions free hashing using a table with O(mࠁ) slots to
store m items.

ࠂ

i

Content Overview

Today:

• level-ࠁ hashing for optimal lookup time and storage.

• universal-ࠁ and pairwise independent hash functions.

• Start on application of random hashing to distributed load
balancing.

• Through this application learn about Chebyshev’s inequality,
which strengthens Markov’s inequality.

ࠃ

Quiz Questions

ࠄ

-

-

E l t o n] : E lGattSun]
= I F[sat] t # (sun)
= 5 . 8 t 6 . 9 5 1 2 . I

Quiz Questions

ࠅ

Hash Tables

We store m items from a large universe in a hash table with n
positions.

• Want to show that when h : U → [n] is a fully random hash
function, query time is O(ࠀ) with good probability.

• Equivalently: want to show that there are few collisions
between hashed items.

ࠆ

=

Collision Free Hashing

Let C =
∑

i,j∈[m],i<j Ci,j be the number of pairwise collisions between
items.

E[C] = m(m− (ࠀ
nࠁ

(via the Captcha analysis)

• For n = ࠁmࠃ we have: E[C] = m(m−ࠀ)
ࠁmࠇ ≤ ࠀ

ࠇ .

Apply Markov’s Inequality:

Pr[C → [ࠀ ≤ E[C]
ࠀ

= ࠀ
ࠇ .

Pr[C = [߿ = −ࠀ Pr[C → [ࠀ → −ࠀ ࠀ
ࠇ
=

ࠆ
ࠇ

I.e., with probability at least ࠇ/ࠆ we have no collisions and thus O(ࠀ)
query time. But we are using O(mࠁ) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

ࠇ

-

L inl icatori f i t & j h s h t os am e
bucket.

(2)o f

Collision Free Hashing

Let C =
∑

i,j∈[m],i<j Ci,j be the number of pairwise collisions between
items.

E[C] = m(m− (ࠀ
nࠁ

(via the Captcha analysis)

• For n = ࠁmࠃ we have: E[C] = m(m−ࠀ)
ࠁmࠇ ≤ ࠀ

ࠇ .

Apply Markov’s Inequality: Pr[C → [ࠀ ≤ E[C]
ࠀ = ࠀ

ࠇ .

Pr[C = [߿ = −ࠀ Pr[C → [ࠀ → −ࠀ ࠀ
ࠇ
=

ࠆ
ࠇ

I.e., with probability at least ࠇ/ࠆ we have no collisions and thus O(ࠀ)
query time. But we are using O(mࠁ) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

ࠇ

Collision Free Hashing

Let C =
∑

i,j∈[m],i<j Ci,j be the number of pairwise collisions between
items.

E[C] = m(m− (ࠀ
nࠁ

(via the Captcha analysis)

• For n = ࠁmࠃ we have: E[C] = m(m−ࠀ)
ࠁmࠇ ≤ ࠀ

ࠇ .

Apply Markov’s Inequality: Pr[C → [ࠀ ≤ E[C]
ࠀ = ࠀ

ࠇ .

Pr[C = [߿ = −ࠀ Pr[C → [ࠀ → −ࠀ ࠀ
ࠇ
=

ࠆ
ࠇ

I.e., with probability at least ࠇ/ࠆ we have no collisions and thus O(ࠀ)
query time. But we are using O(mࠁ) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

ࠇ

Collision Free Hashing

Let C =
∑

i,j∈[m],i<j Ci,j be the number of pairwise collisions between
items.

E[C] = m(m− (ࠀ
nࠁ

(via the Captcha analysis)

• For n = ࠁmࠃ we have: E[C] = m(m−ࠀ)
ࠁmࠇ ≤ ࠀ

ࠇ .

Apply Markov’s Inequality: Pr[C → [ࠀ ≤ E[C]
ࠀ = ࠀ

ࠇ .

Pr[C = [߿ = −ࠀ Pr[C → [ࠀ

→ −ࠀ ࠀ
ࠇ
=

ࠆ
ࠇ

I.e., with probability at least ࠇ/ࠆ we have no collisions and thus O(ࠀ)
query time. But we are using O(mࠁ) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

ࠇ

Collision Free Hashing

Let C =
∑

i,j∈[m],i<j Ci,j be the number of pairwise collisions between
items.

E[C] = m(m− (ࠀ
nࠁ

(via the Captcha analysis)

• For n = ࠁmࠃ we have: E[C] = m(m−ࠀ)
ࠁmࠇ ≤ ࠀ

ࠇ .

Apply Markov’s Inequality: Pr[C → [ࠀ ≤ E[C]
ࠀ = ࠀ

ࠇ .

Pr[C = [߿ = −ࠀ Pr[C → [ࠀ → −ࠀ ࠀ
ࠇ
=

ࠆ
ࠇ

I.e., with probability at least ࠇ/ࠆ we have no collisions and thus O(ࠀ)
query time. But we are using O(mࠁ) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

ࠇ

Collision Free Hashing

Let C =
∑

i,j∈[m],i<j Ci,j be the number of pairwise collisions between
items.

E[C] = m(m− (ࠀ
nࠁ

(via the Captcha analysis)

• For n = ࠁmࠃ we have: E[C] = m(m−ࠀ)
ࠁmࠇ ≤ ࠀ

ࠇ .

Apply Markov’s Inequality: Pr[C → [ࠀ ≤ E[C]
ࠀ = ࠀ

ࠇ .

Pr[C = [߿ = −ࠀ Pr[C → [ࠀ → −ࠀ ࠀ
ࠇ
=

ࠆ
ࠇ

I.e., with probability at least ࠇ/ࠆ we have no collisions and thus O(ࠀ)
query time. But we are using O(mࠁ) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

ࠇ

n , m ' #Cc]:2%2"s's
not"0 specialabut Y .

Two Level Hashing

Want to preserve O(ࠀ) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash
function mapping [si] → [sࠁi].

• Just Showed: A random function is collision free with
probability → ࠆ

ࠇ so can just generate a random hash function
and check if it is collision free.

ࠈ

- .

Two Level Hashing

Want to preserve O(ࠀ) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash
function mapping [si] → [sࠁi].

• Just Showed: A random function is collision free with
probability → ࠆ

ࠇ so can just generate a random hash function
and check if it is collision free.

ࠈ

0cm) §÷.¥
→ ÷ .

:

l .

S i i s a

rondo]
variable

but w e know i ts va l e

Two Level Hashing

Want to preserve O(ࠀ) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash
function mapping [si] → [sࠁi].

• Just Showed: A random function is collision free with
probability → ࠆ

ࠇ so can just generate a random hash function
and check if it is collision free.

ࠈ

Two Level Hashing

Want to preserve O(ࠀ) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash
function mapping [si] → [sࠁi].

• Just Showed: A random function is collision free with
probability → ࠆ

ࠇ so can just generate a random hash function
and check if it is collision free.

ࠈ

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions.

What is the expected space usage?
Up to constants, space used is:

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i





=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is:

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i





=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

0cm) to stre
m items.

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: S = n+

∑n
i=ࠀ sࠁi

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i





=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

I l s : 0cm)
T T

first totals i t e o f
table backuptables

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i





=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

0

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i





=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

q

752mL

s , s o (#itemsi n bulat i)2
S , s t

O s s i s mi o s 3

S,o o

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i





=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

jterI "n'leti
(si):FQ

I HT:#F)2Spcaused

by i th
backuptable.

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i





=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

Collisions again!

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

T
= / i f f h(x;)shine):i

i .e . i f items j and K
collidei nbucket,'

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

t[Inex;)--i'Inapsi):#Clingy,;]
O F = #(Inari)=Li f ha;)!; ° ' otwwin

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ


= Pr[h(xj) = i] = ࠀ
n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i]

= ࠀ
n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

1 .1 i f x ;a n dX k
both huht o i

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]

= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ
nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i]

= ࠀ
nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

I F[IT;-Ik)
I l

nai's'¥Eva!i fiii.I i i '

= ¥2
' I i ; I k

Space Usage

Query time for two level hashing is O(ࠀ): requires evaluating two
hash functions. What is the expected space usage?
Up to constants, space used is: E[S] = n+

∑n
i=ࠀ E[sࠁi]

E[sࠁi] = E

[

]




m∑

j=ࠀ

Ih(xj)=i




ࠁ




= E

[


∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i



 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[
Ih(xj)=i

ࠁ

= Pr[h(xj) = i] = ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = ࠀ

nࠁ .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. ߿ࠀ

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ ≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi]

≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

/

spaceedge
O Fbackuphash
tube.

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ ≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi]

≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

m 2 terms totalµ ,
m o f h i m h o w
j s k-

man-D m(mi) havej#K

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ ≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi]

≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ ≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi]

≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ

≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi]

≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ ≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi]

≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

-

O

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ ≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi]

≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

C

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ ≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi] ≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

"Aiken,

Olm)

Space Usage

E[sࠁi] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · ࠀ
n
+ ࠁ ·


m
ࠁ


· ࠀ
nࠁ

=
m
n

+
m(m− (ࠀ

nࠁ ≤ ࠁ if we set n = m.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= ࠀ

nࠁ .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑

i=ࠀ

E[sࠁi] ≤ n+ n · ࠁ = nࠂ = .mࠂ

Near optimal space with O(ࠀ) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. ࠀࠀ

[FEI
-

-

•a

Msn,,,,,
(1 ,2)

1 2 3 I 11,3)

(ni):minds

•

(a tbtc)(atbtc)
d t h rt i t Labs 2b i t2c a

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Pr[h(x) = i] = ࠀ

n for i ∈ ,ࠀ . . . ,n and h(x),h(y) independent for x %= y.

• To compute a random hash function we have to store a table of
x values and their hash values. Would take at least O(m) space
and O(m) query time to look up h(x) if we hash m values.
Making our whole quest for O(ࠀ) query time pointless!

ࠁࠀ

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Pr[h(x) = i] = ࠀ

n for i ∈ ,ࠀ . . . ,n and h(x),h(y) independent for x %= y.

• To compute a random hash function we have to store a table of
x values and their hash values. Would take at least O(m) space
and O(m) query time to look up h(x) if we hash m values.
Making our whole quest for O(ࠀ) query time pointless!

ࠁࠀ

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = ࠀ
nࠁ .

Exercise :ࠀ Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = i ∩ h(y) = j] = ࠀ

nࠁ (so a fully random hash function is
pairwise independent).

Efficient Implementation: Let p be a prime with p → |U|. Choose
random a,b ∈ [p] with a %= .߿ Represent x as an integer and let

h(x) = (ax+ b mod p) mod n.

ࠂࠀ

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = ࠀ
nࠁ .

Exercise :ࠀ Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = i ∩ h(y) = j] = ࠀ

nࠁ (so a fully random hash function is
pairwise independent).

Efficient Implementation: Let p be a prime with p → |U|. Choose
random a,b ∈ [p] with a %= .߿ Represent x as an integer and let

h(x) = (ax+ b mod p) mod n.

ࠂࠀ

Prchix)s i nhaysi):'gz

Prak)s i nhly)=j n htt):K]¥3
t i l e for a fully random function

hlx)sa.xtbmodp&

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = ࠀ
nࠁ .

Exercise :ࠀ Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = i ∩ h(y) = j] = ࠀ

nࠁ (so a fully random hash function is
pairwise independent).

Efficient Implementation: Let p be a prime with p → |U|. Choose
random a,b ∈ [p] with a %= .߿ Represent x as an integer and let

h(x) = (ax+ b mod p) mod n.

ࠂࠀ

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = ࠀ
nࠁ .

Exercise :ࠀ Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = i ∩ h(y) = j] = ࠀ

nࠁ (so a fully random hash function is
pairwise independent).

Efficient Implementation: Let p be a prime with p → |U|. Choose
random a,b ∈ [p] with a %= .߿ Represent x as an integer and let

h(x) = (ax+ b mod p) mod n.

ࠂࠀ

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = ࠀ
nࠁ .

Exercise :ࠀ Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = i ∩ h(y) = j] = ࠀ

nࠁ (so a fully random hash function is
pairwise independent).

Efficient Implementation: Let p be a prime with p → |U|. Choose
random a,b ∈ [p] with a %= .߿ Represent x as an integer and let

h(x) = (ax+ b mod p) mod n. ࠂࠀ
• a

Universal Hashing

Another common requirement for a hash function:

Universal-ࠁ Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ ࠀ
n
.

Think-Pair-Shair: Which is a more stringent requirement?
universal-ࠁ or pairwise independent?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = ࠀ
nࠁ .

Pr[h(x) = h(y)] =
n∑

i=ࠀ

Pr[h(x) = i ∩ h(y) = i] = n · ࠀ
nࠁ =

ࠀ
n
.

Remember: A fully random hash function is both universal-ࠁ and
pairwise independent. But it is not efficiently implementable.

Exercise :ࠁ Rework the two-level hashing proof to show that
universality-ࠁ is in fact all that is needed.

ࠃࠀ

fullyrandom: P r(hk)shly))=L

Universal Hashing

Another common requirement for a hash function:

Universal-ࠁ Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ ࠀ
n
.

Think-Pair-Shair: Which is a more stringent requirement?
universal-ࠁ or pairwise independent?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = ࠀ
nࠁ .

Pr[h(x) = h(y)] =
n∑

i=ࠀ

Pr[h(x) = i ∩ h(y) = i] = n · ࠀ
nࠁ =

ࠀ
n
.

Remember: A fully random hash function is both universal-ࠁ and
pairwise independent. But it is not efficiently implementable.

Exercise :ࠁ Rework the two-level hashing proof to show that
universality-ࠁ is in fact all that is needed.

ࠃࠀ

Universal Hashing

Another common requirement for a hash function:

Universal-ࠁ Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ ࠀ
n
.

Think-Pair-Shair: Which is a more stringent requirement?
universal-ࠁ or pairwise independent?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = ࠀ
nࠁ .

Pr[h(x) = h(y)] =
n∑

i=ࠀ

Pr[h(x) = i ∩ h(y) = i] = n · ࠀ
nࠁ =

ࠀ
n
.

Remember: A fully random hash function is both universal-ࠁ and
pairwise independent. But it is not efficiently implementable.

Exercise :ࠁ Rework the two-level hashing proof to show that
universality-ࠁ is in fact all that is needed.

ࠃࠀ

Universal Hashing

Another common requirement for a hash function:

Universal-ࠁ Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ ࠀ
n
.

Think-Pair-Shair: Which is a more stringent requirement?
universal-ࠁ or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=ࠀ

Pr[h(x) = i ∩ h(y) = i] = n · ࠀ
nࠁ =

ࠀ
n
.

Remember: A fully random hash function is both universal-ࠁ and
pairwise independent. But it is not efficiently implementable.

Exercise :ࠁ Rework the two-level hashing proof to show that
universality-ࠁ is in fact all that is needed.

ࠃࠀ

(

I t f{L
PainiseI n d . ⇒ 2-universal a€÷Q¥÷I

⇐

Universal Hashing

Another common requirement for a hash function:

Universal-ࠁ Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ ࠀ
n
.

Think-Pair-Shair: Which is a more stringent requirement?
universal-ࠁ or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=ࠀ

Pr[h(x) = i ∩ h(y) = i] = n · ࠀ
nࠁ =

ࠀ
n
.

Remember: A fully random hash function is both universal-ࠁ and
pairwise independent. But it is not efficiently implementable.

Exercise :ࠁ Rework the two-level hashing proof to show that
universality-ࠁ is in fact all that is needed.

ࠃࠀ

Universal Hashing

Another common requirement for a hash function:

Universal-ࠁ Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ ࠀ
n
.

Think-Pair-Shair: Which is a more stringent requirement?
universal-ࠁ or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=ࠀ

Pr[h(x) = i ∩ h(y) = i] = n · ࠀ
nࠁ =

ࠀ
n
.

Remember: A fully random hash function is both universal-ࠁ and
pairwise independent. But it is not efficiently implementable.

Exercise :ࠁ Rework the two-level hashing proof to show that
universality-ࠁ is in fact all that is needed. ࠃࠀ

Questions on Hash Tables?

ࠄࠀ

Next Step

.ࠀ We’ll consider an application where our toolkit of linearity of
expectation + Markov’s inequality doesn’t give much.

.ࠁ Then we’ll show how a simple twist on Markov’s
(Chebyshev’s inequality) can give a much stronger result.

ࠅࠀ

Prchdshly)):Monti'spioni

