COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Spring 2026.
Lecture 3

- Problem Set 1 was posted on Friday (see Assignments Tab on
course webpage) and is due Friday 2/20 at 11:59pm.

- The ‘Challenge Problems’ are optional.

- On the quiz many number of people cited concerns about their
probability/stats background. We will be going over background
material for the next few classes, so try to stay on top of things
these first few weeks, and you should be ok.

- For linear algebra you have time to review — we will only use it
after the first midterm.

- Stop by office hours for probability review, to go over material
from lecture, etc. | also highly recommend the exercises in
Foundations of Data Science and Probability and Computing.

- Itis common to not catch everything in lecture. | strongly
encourage going back to the slides to review, and to interrupt
with questions during class. 2

Content Overview

Last Class:

- Markov's inequality: the most fundamental concentration
bound. Pr(X > t- E[X]) < 1/t.
- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.
- Analysis of hash tables with random hash functions.
- Collisions free hashing using a table with O(m?) slots to
store m items.

Content Overview

Today:

- 2-level hashing for optimal lookup time and storage.
- 2-universal and pairwise independent hash functions.

- Start on application of random hashing to distributed load
balancing.

- Through this application learn about Chebyshev's inequality,
which strengthens Markov's inequality.

Quiz Questions

1 point g

The expected number of inches of rain on Saturday is 5.8 and the expected number of inches
on Sunday is 6.9. THETE Is a 50% chance of ratr-en-Saturday If it rains on Saturday there is a
75% chance-efrain-onSundaytfitdoesTot rain on Saturday; thereisenty-a25%-chanreeof rain
o Surmday. What is the expected number of inches of rainfall total over the weekend?

Elretd} Es4 + 5on]
EL5-+]+ El5wn])

5y + 6.9 ° V=7

\

U

We store m items from a large universe in a hash table with n

positions.

128-bit IP addresses Hash Table

=1 *—ﬁ
L8 ﬂu@-ﬁ’“) 2 1
P 2
172.16.254.1 T \ 3
o 4
192.168.1.34 A :

16.58.26.164 h(16.58.26.164)= 1590

n

- Want to show that when h : U — [n] is a fully random hash
function, query time is O(1) with good probability.

- Equivalently: want to show that there are few collisions
between hashed items.

Collision Free Hashing

Let €= 37 jepm),i<; Cij be the number of pairwise collisions between

items. Cirleader F ko and) hedn R Same
E[C] = w (via the Captcha analysis) bocke |
MmN,)
(2)2

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Collision Free Hashing

Let C= 3" je(m),i<j Cij e the number of pairwise collisions between

items.
mim—=1) . :
E[C] = ETEE (via the Captcha analysis)
- For n = 4m? we have: E[C] = 201 < 1.

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Collision Free Hashing

Let C= 3" je(m),i<j Cij e the number of pairwise collisions between
items.
mim—=1) . :
E[C] = ETEE (via the Captcha analysis)

m(m—1)
8m?

« For n = 4m? we have: E[C] = <3

Apply Markov's Inequality: Pr[C > 1] < 29 — 1.

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Collision Free Hashing

Let C= 3" je(m),i<j Cij e the number of pairwise collisions between

items.
mim—=1) . :
E[C] = ETEE (via the Captcha analysis)
. —1
- For n = 4m? we have: E[C] = 201 < 1.
? . E[C
Apply Markov's Inequality: Pr[C > 1] < % = 3.

Pr[C=0] =1—Pr[C > 1]

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Collision Free Hashing

Let C= 3" je(m),i<j Cij e the number of pairwise collisions between

items.
mim—=1) . :
E[C] = ETEE (via the Captcha analysis)
. —1
- For n = 4m? we have: E[C] = 201 < 1.
? . E[C
Apply Markov's Inequality: Pr[C > 1] < % = 3.

1 7
PC=0]=1—-PrlC>1>1—- ==
fC=0=1-PlC>1 21— =2

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Collision Free Hashing

Let C= 3" je(m),i<j Cij e the number of pairwise collisions between

items.
mim—=1) . :
E[C] = ETEE (via the Captcha analysis)
M,\
pret o ELC]) —;-'L
. For n= 4m2 we have: E[C] = M(") <3
r\()'“‘ -v(\‘«/ M.
Apply Markov's Inequality: Pr[C > 1] < B9 — 1

1 7
PrilC=0]=1—Pr[C>1]>1 573
l.e., with probability at least 7/8 we have no collisions and thus O(1)

query time. But we are using O(m?) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Two Level Hashing

Want to preserve O(1) query time while using O(m) space.
- T

Two Level Hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing: A

(’
random hash O W\>

function

172.16.254.1

TR WN -

collision free | % O(s{?) space
hash function hash table

192.168.1.34

16.58.26.164

S IS e foadnen Vs

‘b\f\w e \(\J\(N\' \\/S \jLJQJ

Two Level Hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 . collision free O(Siz) space
. [Svalues | ash function hash table

16.58.26.164

For each bucket with s; values, pick a collision free hash
function mapping [s;] — [s7].

Two Level Hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 . collision free O(Siz) space
. [Svalues | ash function hash table

16.58.26.164

- For each bucket with s; values, pick a collision free hash
function mapping [s;] — [s7].

- Just Showed: A random function is collision free with
probability > £ so can just generate a random hash function
and check if it is collision free.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Xj, X Stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 10

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage? OLMB L Y

™M den §.

Xj, X Stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 10

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: S=n + ZL s[2 /ES - U m>
/[\
frd W e of
e bedip bles

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usg

Up to constants, space used is: E[S] =n + > 1\

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evalua

t 0
hash functions. What is the expected space usage? Sn = e l

Up to constants, space used is: E[S] = n + YL, E[s7]

7
A @4 hns in Locked ;>9\

St
é\'\ﬁ 2 1 O = Sl‘
Sioo

Lt

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is; E[S] = n + Y.L, E[s?]

W=y ia
m [oot 1 . - m
@E Z_;I[h(xl):,- E[S\] BN
| i/\ﬂ/
%)1_& \’@ 5\
}X '\'\\r‘\
MD\C ¥ ’\""\G\L

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

2
m

Els/] =E | | Y Tng)=
j=1

=K Zﬂhx, =i Hhxk

U RE[M] v NS

(Collisions again!

O W) Fh ki) =

l_e__ \Ebens) ”"V\l \L L\)\\‘)c_, - \vL\u,\r:

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

m
Els/] =E | | Y Tng)=
=

2

=E Z Ihey=i * Ihgxy=i | = Z E[Hh(x,-):/"]lh(xh):i

L kelm] jikelm]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

2
m

Els/] =E | | Y Tng)=
j=1

=E Z Tngo)=i - Thiy=i| = > E [Hh(xj):f'ﬂh(xh):i} -

LJ,Re[m] Jj,ke[m]
- Forj =k, . . L
EEI“("')) s IM&)""} ’ E[[hL&)Bﬂi} 1
| "l B - L
1€ \nu\\‘:i " o’gw\iw [b 2

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

Els{] =E
=E

- Forj =k,
E {Hh(x/):/'

2

m
Z Ih(x)=i
=1

Z Hh (x))=i Hh (xx)=i| = Z E [Hh(x,-):/"]lh(xre):"

LJ,Re[m] Jj,ke[m]

’]Ih(xh):i} =E {(Hh(x/)—/)z}

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

Els{] =E
=E

- Forj =k,
E {Hh(x/):/'

2

m
Z Ih(x)=i
=1

Z Hh (x))=i Hh (xx)=i| = Z E [Hh(x,-):/"]lh(xre):"

LJ,Re[m] Jj,ke[m]

’]Ih(xh):i} =E {(Hh(x/)—/)z} = Pr[h(x) = 1]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

Els{] =E
=E

- Forj =k,
E {Hh(x/):/'

2

m
Z Ih(x)=i
=1

Z Hh(x, =i * Thixy)= Z E[Hh (x)=i " Th) =i

LJ,Re[m] J,Re[m]

o] = | (=) | = Pehte) == 1

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

2
m

Els/] =E | | Y Tng)=
j=1

=E Z Tnoo)y=i * Tnge)=i | = D E[Hh() “Thx)=i

= jukelm]
- Forj=k,
2
E {Hh(x/) Thx)= ,} =E {(Hh(x/)—/) } = Prlh(x) =1 = 1
] F)k ANL >(\J\

CFOrj £k e hdn 4o i

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

2
m

Els/] =E | | Y Tng)=
j=1

=E Z Tnoo)y=i * Tnge)=i | = D E[Hh() “Thx)=i

LJ,Re[m] Jj,ke[m]

- Forj =R,
2
E {Hh(x/):/' ’]Ih(xh):i} =E {(Hh(x/)—/) } = Prlh(x) =1 = 1

- Forj#RE {Hh(x/):i : Hh(xk):/}

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

m ’ E[ll_)) I\;S

E[S,z] =E Zﬂh(xl):" I’™No ohwig

f O I\r 1
hbll) : Okl hlxd 2!

=E Z Iheo)=i - Thx)=i | = Z E[Hh(x)=i " The)= }

L kelm] j.kelm]

- Forj =k,
2
E {Hh(x/):/' ’]Ih(xh):i} =E {(Hh(x/)—/) } =Prih(x) =1 =1
|

- Forj#RE [}{h%):i.%(xk):,} = Prlh(x) =inh(x) =11 = [z
) S

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

2
m

Els/] =E | | Y Tng)=
j=1

=E Z Tnoo)y=i * Tnge)=i | = D E[Hh() “Thx)=i

LJ,Re[m] Jj,ke[m]

- Forj =R,
2
E {Hh(x/):/' ’]Ih(xh):i} =E {(Hh(x/)—/) } = Prlh(x) =1 = 1

- Forj#RE [Hh(x/):,- : Hhm):,} =Pr[h(x) = iNh(xe) =] = .

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Elsf]=) E [Hh(x,):/ : Hh(xk):«}
J:kelm]
S‘?&a N ZQXBL
o \g«.C{(_ IheQn
\'t.-\n\Q,- \P

- Forj=RE [Hh(x,):i - Hh(xk):/}

- Forj#RE [Hh(x,):i ' Hh(xk):/} =

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

1

Space Usage

E[sf]=) E [Hh(m\r- Hh(xk):z} AN S G Y
REm e/
m.1+2.(m)'1 \rv\ FC\“\\N\—\L\L\.JV
N 2) n? \:\L
(*\(M—D m('m,\B \f\‘\,\/-b .)1,\(

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. n

Space Usage

Elsf] = Y E [Ty - T

J;kRe[m]

7mW+2 m !
- n 2) n?

Forj=RE {Hh(xs)*/ ’ J[h(x;;)*/} =5

- Forj#RE [Hh(x,):i ' Hh(xk):/}

I
3

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. n

Space Usage

Elsf] = Y E [Ty - T

J;kRe[m]

fm1+2 " !
- n 2) n?

- Forj=RE [Hh(x,):i : Hh(xk):/} =1

- Forj#RE {Hh(x,):f : Hh(x,\,):/} a5

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. n

Elsf] = Y E [Ty - T

J;kRe[m]

—m1+2 m 1
o n 2) n?

m m(m-—1)
n n

- fForj=k E {Hha,):f ' Hh(xw:f} =3

- Forj#RE [Hh(x,):i ' Hh(xk):/} =

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

Space Usage

1

E[s{] = Z E [Hh(x,):/ : Hh(xk):«}
T jkelm)

=m 1+2 m !
B n 2) n?
m m(m-—1) .
:—+72§2|fvveset
n n

. FOI’j = f?, E {Hh(x,):i . Hh(xk):/} %

- Forj#RE [Hh(x,):i ' Hh(xk):/} =

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

Space Usage

1

Elsf] = Y E [Ty - T

J;kRe[m]

fm1+2 m !
- n 2) n?

m m(m—1 .
—+¥§2|fwesetn:m,
n n

* Forj=kE [Hh(x,):i : Hh(xk):/} =3

n:

- Forj#RE [Hh(x,):i : Hh(xk):/} = .

n

Total Expected Space Usage: (if we seE n= m)7
n
E[S] =n+) E[s]]

i=1

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

Space Usage

1

Elsf] = Y E [Ty - T

J,ke[m]
1 m 1
=-m. — 2. .
n’t (2) n?
m m(m-—1 .
_f+¥§2|fvvesetn:m,
n n

- Forj=R E [Hh(x,):i . Hh(xk):/} =1

n:

- Forj#RE {Hh(x,):i ' Hh(xk):f} =

n

Total Expected Space Usage: (if we set n = m) H—\\‘im}

/.

n
}E[S]:n+ZE[s,-2]§n+n-2:3n:3m.

O(W\>

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

Space Usage

1

Space Usage

E[SZ] = Z E [Hh(x,):/ : Hh(xk):«}

jhem m:{\
el (D) ()
im Lm—_i <2ifwesetn=m. UIL)
(=) n [1,%)

 Forj = R E [Tnge)— - Tngs = } (5,0

("H) © mim l)
. FOl'j # kR, E [Hh()(,):i : Hh(xk):/} = % 1 2

Total Expected Space Usage: (if we set n = m)

n
E[S]=n+) E[sf]<n+n-2=3n=3m

= A (c~+b f(,) (Qﬁrbfo)

Near optimal space with O(1) query time!

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

<t Et e Y bt Lea

1

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Prlh(x) =i = 1 fori€1,...,n and h(x), h(y) independent for x # .

Y- D{K)) 1A (xkj; l/B - ll

N

12

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Prlh(x) =i = 1 fori€1,...,n and h(x), h(y) independent for x # .

- To compute a random hash function we have to store a table of
x values and their hash values. Would take at least O(m) space
and O(m) query time to look up h(x) if we hash m values.
Making our whole quest for O(1) query time pointless!

x h(x)
X, | 45
X, 1004
X3 | 10

12

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

13

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

pr[h(x):iﬂh(y):j]:%'
Pr{h9)=i n b S
PrlWc) =i n nly)=) 0 hR): k) 47\\—3

v L

W £ ~ Q\\j INOR ST N PN

W s X th my o)

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =1 = .

Exercise 1: Check the two-level hashing proof to confirm that this
property is all that was needed.

13

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =1 = .

Exercise 1: Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = inh(y) =j] = % (so a fully random hash function is
pairwise independent).

13

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =1 = .

Exercise 1: Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = inh(y) =j] = % (so a fully random hash function is
pairwise independent).

Efficient Implementation: Let p be a prime with p > |U|. Choose
random a, b € [p] with a # 0. Represent x as an integer and let

h(x)=(ax+b modp) modn. 13

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

QA fdant Pr Dr\b«) “1n (\\p] ’-\7\\

14

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

14

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh(e) = inh(y) =] = 5.

14

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

Prih(x) = h(y)] = Z Prlh(x) =inh(y) =il =n-—

—_

/\L
?u}fm\w ’\:\{\é :? 9\—\)(\‘\\/.0\,]6\,\

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

n
. . 1
Prh(x) = h(y)] = Z Prlh(x) =inh(y)=i=n- priiie
i=1
Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.

14

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

n
. . 1
Prh(x) = h(y)] = Z Prlh(x) =inh(y)=i=n- priiie
i=1
Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.

Exercise 2: Rework the two-level hashing proof to show that
2-universality is in fact all that is needed.

14

Questions on Hash Tables?

15

Next Step

5) -
Pr i) 0 %1‘7\ o

1. We'll consider an application toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

2. Then we'll show how a simple twist on Markov's
(Chebyshev's inequality) can give a much stronger result.

16

