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LOGISTICS

- Problem Set 2 was released Sunday night and is due Sunday
3/8.

- Please make sure to mark all teammates in the GradeScope
submission (don't just write names on the document).

- The Midterm will be on Thursday 3/12. Will cover material
through this week.

- Study guide/practice questions to be released soon.
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- Misra-Greis summaries (deterministic method).
- Started on Count-Min Sketch (randomized method).
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Last Class:

- Continued on the frequent elements problem.
- Misra-Greis summaries (deterministic method).
- Started on Count-Min Sketch (randomized method).

This Class:

- Finish up Count-Min Sketch analysis.
- Start on randomized methods for dimensionality reduction.

- The Johnson-Lindenstrauss Lemma.
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FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Frequent Items Problem: Identify all items with frequency
> n/kin a stream of n items.

Count-Min Sketch: Bloom filter like solution using random
hashing.

Use A[h(x)] to estimate f(x), the frequency of x in the stream.
Le, [{x; : xi = x}|.




COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x). Why?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.




COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with

h(y) = h(x), includi i 2
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.




COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > v

y#xh(y)=h(x)

error in frequency estimate

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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ATh()] = f(x) + > v

y#xh(y)=h(x)

Expected Error: error in frequency estimate

El > fwl= jzf‘m \C\(\5>

y#xh(y)=h(x)
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > v

y#xh(y)=h(x)

Expected Error: error in frequency estimate

E| > f)| =D Pr(h(y) =h(x))-fv)

y#xh(y)=h(x) y#x

:Z%-f(y)

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.




COUNT-MIN SKETCH ACCURACY

Alh(x)] = f(x) + Sy
y#xh(y)=h(x)
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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ATh()] = f(x) + > v

y#xh(y)=h(x)

Expected Error: error in frequency estimate
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f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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ATh()] = f(x) + > v

y#xh(y)=h(x)

Expected Error: error in frequency estimate

E| > f)| =D Pr(h(y) =h(x))-fv)

y#xh(y)=h(x) y#x
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Markov's inequality: Pr {Zy#:h(y):h(x) fly) > %”} <

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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ATh()] = f(x) + > v

y#xh(y)=h(x)

Expected Error: error in frequency estimate
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Markov's inequality: Pr {Zy#:h(y):h(x) fly) > %”} <

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.




COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + > v

y#xh(y)=h(x)

Expected Error: error in frequency estimate

El >

y#xh(y)=h(x)

wl—=

Markov's inequality: Pr {Zy#:h(y):h(x) fly) > %”} <

2-universal.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.




COUNT-MIN SKETCH ACCURACY

X; Xy Xz Xg e Xn

random hash function h
mIengtharrayAl 4 2 1 | 6 . 1 2]

Claim: For any x, with probability at least 2/3,
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f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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X1 Xp X3 X4 Xy

random hash function h

m length arrayAl 4 2 1 IZ. 1 3

Claim: For any x, with probability at least 2/3,

f(x) < Alh()] < f(x) +

To solve the (e, R)-Frequent elements problem, set m = %

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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Claim: For any x, with probability at least 2/3,
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To solve the (e, R)-Frequent elements problem, set m = %

How can we improve the success probability?

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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X1 Xp X3 X4 Xy

random hash function h

m length arrayAl 4 2 1 IZ. 1 3

Claim: For any x, with probability at least 2/3,

f(x) < Alh()] < f(x) +

To solve the (e, R)-Frequent elements problem, set m = %

How can we improve the success probability?

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of count-min sketch array.




COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

t random hash functions
hy, hy,..., by

A, 0 0 0 0 0 0 0 0 0 0

tlength marrays A, | 0 | 0 | 0 | O
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Xy Xp X3 Xg e Xq

¥random hash functions
hy, hy,... hy

A1100000‘0‘000

tlength marrays A, | 0 | 0 |0 O




COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

) t}ar;dom hash functions
hy, hy ... hy

Arl2|o0o/djo % o o o o0 o0

tlengthmarrays A, | 0 | 0 | 1 O




COUNT-MIN SKETCH ACCURACY

X4 Xo X3 Xy Xn

t random hash functions
hy, hy,..., by

A, 2 5 1 0 6 12: 1 8 4

tlengthmarrays A2 | 1 | 6 | 1 | 10 78.4 11| 3 | 5

At:l 52 | 6 | 3 | 12 33:3 2




COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

A

tlength m arrays Az

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)
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Xn

X4 Xo X3 Xy

A

L |
tlength m arrays Az \1 6 | 1 1oi 4 11| 3 5
6 | 3 |12 33.3 2

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)

Why min instead of mean or median?




COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e Xq

A

L |
tlength m arrays Az \1 6 | 1 1oi 4 11| 3 5
6 | 3 |12 33.3 2

Estimate f(x) with f(x) = min;cg Aihi(x)]. (count-min sketch)
Why min instead of mean or median? The minimum estimate
is always the most accurate since they are all overestimates of
the true frequency!
7




COUNT-MIN SKETCH ANALYSIS
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Estimate f(x) by f(x) = minjcy Ailhi(x)]

x
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Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]

- For every x and i € [t], we know that for m = O(R/e), with

probability > 2/3:
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COUNT-MIN SKETCH ANALYSIS

Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]

- For every x and i € [t], we know that for m = O(R/e), with

probability > 2/3:
) < Ay (] < 709 + -

- What is Pr[f(x) < f(x) < f(x) + €2]? 1—1/3t.
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Estimate f(x) by f(x) = minjcy Ailhi(x)]
- For every x and i € [t], we know that for m = O(R/e), with

S _ |
probability > 2/3: |- /be s -8

) < AOOT < 0 + - N
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- What is Pr[f(x) < f(x) < f(x) + €2]? 1—1/3t. oy () # b ’105(2)
- To get a good estimate with probability > 1—0, sett = . 8




COUNT-MIN SKETCH ANALYSIS

Xy Xy X3 X4 R

Estimate f(x) by f(x) = minjcy Ailhi(x)]

- For every x and i € [t], we know that for m = O(R/e), with

probability > 2/3:
) < Ay (] < 709 + -

- What is Pr[f(x) < f(x) < f(x) + €2]? 1—1/3t.

- To get a good estimate with probability > 1—46, sett = O(log(1/9)). 8
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COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ' with probability > 1—4din
O (log(1/0) - R/€) space.

- Accurate enough to solve the (e, k)-Frequent elements
problem.



COUNT-MIN SKETCH

\NO0/ o) = 1900V [ @ j

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ' with probability > 1—4din

O (log(1/9) - R/€) space. \ E;/)
- Accurate enough to solve the (e, R)-Frequent elements ’4
problem.

- Actually identifying the frequent elements quickly requires a
little bit of further work.
One approach: Separately store a list of potential frequent
elements as they come in. At step i, keep any elements
whose estimated frequency is > i/k. List contains at most
O(k) items at any step and has all items with frequency
> n/k stored at the end of the stream.



Questions on Frequent Elements?

10
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HIGH DIMENSIONAL DATA

‘Big Data’ means not just many data points, but many measurements
per data point. le,, very high dimensional data.

- Twitter has 321 million active monthly users. Records (tens of)
thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for
specific interactions, how many tweets they have sent, the text of
those tweets, etc.

- A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15
frames/second with 3 color channels is a recording of > 2 billion
pixel values. Even a 500 x 500 pixel color image has 750, 000 pixel
values.

+ The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.
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DATA AS VECTORS AND MATRICES

In data analysis and machine learning, data points with many
attributes are often stored, processed, and interpreted as high
dimensional vectors, with real valued entries.

ATAGCCGTAGT ==———p x =[12134432134]

Similarities/distances between
vectors (e.g, (x,V), [x — v|l2) have
meaning for underlying data points.




DATASETS AS VECTORS AND MATRICES

Data points are interpreted as high dimensional vectors, with
real valued entries. Data set is interpreted as a matrix.

Data Points: X1,%,, ..., X, € RY.

Data Set: X € R"*9 with i rows equal to X;.
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Data points are interpreted as , with
real valued entries. Data set is interpreted as a matrix.

Data Points: X1,%,, ..., X, € RY.
Data Set: X € R"*9 with i rows equal to X;.

X € Rnxd
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DATASETS AS VECTORS AND MATRICES

Data points are interpreted as , with
real valued entries. Data set is interpreted as a matrix.

Data Points: X1,%,, ..., X, € RY.
Data Set: X € R"*9 with i rows equal to X;.

X € Rnxd

el N = 3000 iMmages

LYPY~~~=0000

d = 784 pixels

Many data points n = tall. Many dimensions d = wide.



DIMENSIONALITY REDUCTION

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.
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DIMENSIONALITY REDUCTION

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

Xy Jn €RY % %, e R form < d.

—>x=[ 100110111..] =——> 5,54 3.2
\’V,__j —_—
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DIMENSIONALITY REDUCTION

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

Xy Jn €RY % %, e R form < d.

—>x=[ 10011 111..@

‘Lossy compression’ that still preserves important information about
the relationships between X, ..., X,.
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DIMENSIONALITY REDUCTION

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

Xy Jn €RY % %, e R form < d.
—>x=[ 100110111..] =——>

‘Lossy compression’ that still preserves important information about
the relationships between X, ..., X,.

Generally will not consider directly how well X; approximates Xi. "
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DIMENSIONALITY REDUCTION

Dimensionality reduction is one of the most important
techniques in data science.

- Principal component analysis
- Latent semantic analysis (LSA)

Raw Text Term Document Representation Latent Representation

1101101..] %,=[1.12.40-5]
.‘xz [111 10111010..] ‘ = [1.4567-1]
X, =[10101 1 ] % 1 1

= [

- Linear discriminant analysis
- Autoencoders

Compressing data makes it more efficient to work with. May
also remove extraneous information/noise.



LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given X, ..., X, eistance function
D, and error parameter € > 0, find Xy,...,X, € R™ (where m < d) and
distance function D such that for all i, € [n]:

(1—€)D(X,, %) < D(%:, %) < (14 €)D(X;, X).
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Low Distortion Embedding: Given X, ..., X, € RY, distance function
D, and error parameter € > 0, find Xy,...,X, € R™ (where m < d) and
distance function D such that for all i,j € [n]:

(1= e)D(%:, %)) < D(%i, %)) < (1+ €)D(%:, %;).
Have already seen one example in class: MinHash.
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D, and error parameter € > 0, find Xy,...,X, € R™ (where m < d) and
distance function D such that for all i,j € [n]:

(1= €)D(Xi, %) < D(%,%) < (1+ €)D(X;, X)-
Have already seen one example in class: MinHash.

B

x=[10101100] 28 |x=[01001101]
R ———E— - T

MinHash
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LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given X, ..., X, € RY, distance function
D, and error parameter € > 0, find Xy,...,X, € R™ (where m < d) and
distance function D such that for all i,j € [n]:

(1= €)D(Xi, %) < D(%,%) < (1+ €)D(X;, X)-
Have already seen one example in class: MinHash.

B

x=[10101100] 28 |x=[01001101]

MinHash

%4 =[.12.09 .17] 18 .09 .28
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LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given X, ..., X, € RY, distance function
D, and error parameter € > 0, find Xy,...,X, € R™ (where m < d) and
distance function D such that for all i,j € [n]:

(1= €)D(Xi, %) < D(%,%) < (1+ €)D(X;, X)-
Have already seen one example in class: MinHash.

B

x=[10101100] 28 |x=[01001101]

MinHash

With large enough signature size r, Zmatchingentries n%a.%s oy, X3).
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LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given X, ..., X, € RY, distance function
D, and error parameter € > 0, find Xy,...,X, € R™ (where m < d) and
distance function D such that for all i,j € [n]:

(1—€)D(X,, %) < D(%:, %) < (14 €)D(X;, X).

Have already seen one example in class: MinHash.

B
—
L/xA=[101011oo1 28 |x=[01001101]

MinHash

%, =[12.09 .17] 18 .09 .28]

With large enough signature size r, Zmatchingentries n%a.%s oy, X3).

- Reduce dimension from d = |U| to r. Note: here J(Xs,Xs) is a
similarity rather than a distance. So this is not quite low distortion

embedding, but is closely related. 1



EMBEDDINGS FOR EUCLIDEAN SPACE

Euclidean Low Distortion Embedding: Given X, ..., X, € R? and error
parameter € > 0, find X;,...,%, € R™ (where m < d) such that for all
.. ~S
i,j€[n]:

] DD o

1—)|IXi — Xill2 < 1% — Xl < (1 + €)|IX; — Xi||2- - .
(= R =l < 5 =l < O+ AR =Tl )
Recall that for Z € R", ||Z]l, = />, Z(i)2.
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EMBEDDINGS FOR EUCLIDEAN SPACE

Euclidean Low Distortion Embedding: Given X, ..., X, € R? and error
parameter € > 0, find X;,...,%, € R™ (where m < d) such that for all
I,J € [n]:

(1= OlIXi =Xl < [1%i = Xll> < (1+ €)l1Xi = X [1-

Recall that for Z € R", ||Z]l, = />, Z(i)2.

Pythagorean theorem)

llzll, = V2(D? + 2(2)?

17



EMBEDDINGS FOR EUCLIDEAN SPACE

Euclidean Low Distortion Embedding: Given X, ..., X, € R? and error
parameter € > 0, find X;,...,%, € R™ (where m < d) such that for all
I,J € [n]:

(1=l =Xl < 11K = Xjlla < (1 + 1% = Klo-

d-dimensional space m-dimensional space
PY (for m << d)
® PY ®

[
o, o
[|x: —xj||2X\> \/2
e [
2 - %1,
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EMBEDDINGS FOR EUCLIDEAN SPACE

Euclidean Low Distortion Embedding: Given X, ..., X, € R? and error
parameter € > 0, find X;,...,%, € R™ (where m < d) such that for all
I,J € [n]:

(1=l =Xl < 11K = Xjlla < (1 + 1% = Klo-

d-dimensional space m-dimensional space
[ ] (for m << d)
O o °

o ® o

° °®

e, o
=50, VX

2 - %1,
Can use X4,...,%, in place of X;,...,X, in clustering, SVM, linear

classification, near neighbor search, etc. 7



EMBEDDING WITH ASSUMPTIONS

A very easy case: Assume that X;, ..., X, all lie on the 15t axis in RY.
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EMBEDDING WITH ASSUMPTIONS

A very easy case: Assume that X;, ..., X, all lie on the 15t axis in RY.
&\(_\3 0O oo O/X
+
-7 . Y
X (/*\LOS e0 00 oo 0

Setm = 1andX; = X;(1) (i.e,, X is just a single number).

% =%l = /(1) = X1 = 1X(1) = X)) = X = X2

18



EMBEDDING WITH ASSUMPTIONS

A very easy case: Assume that X;, ..., X, all lie on the 15t axis in RY.

st & oo - A
R ! PR %&f@,@ QB

o)

QF\)L\W N
© > 6 MQ\H... 00 HXBZ@—Q—\Z
(N
" o 0 ’ H\‘ﬂg AXM?
o
< 0

Setm = 1andX; = X;(1) (i.e,, X is just a single number). I

K =Kl =/ IXG(1) = X (PP = 1X(1) = (1) = [IX; = X[J2.
+ An embedding with no distortion from any d into m = 1.
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