COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.
Lecture 8

tinyurl.com/musco2020

tinyurl.com/musco2020

LOGISTICS

- Problem Set 1 was due this past Friday. Will be graded by
next week.

- Problem Set 2 to be released end of this week and due ~ 3/6.

ACADEMIC HONESTY ON PROBLEM SETS

- We take academic honestly on the problem sets seriously.

- If caught copying from another group (or allowing someone
to copy your work), copying from problem sets or answer
keys from past semesters, etc. you will receive a 0% on the
problem set and 5% off your final course grade.

- Even if one group member copies, the rest of the group is at
risk of the same deduction. Don’t just split up the problems
and not work on them together.

- You can change your problem set group from assignment to
assignment.

SUMMARY

Last Class:

- SimHash for cosine similarity

- Applications to e.g., approximate neural network
computation.

- Introduction to the Frequent Elements (heavy-hitters)
problem in data streams.

- The Boyer-Moore voting algorithm for majority.

This Class:

- Extend Boyer-Moore to the general Frequent Elements:
problem: Misra-Gries summaries.

- Count-min sketch (random hashing for frequent element
estimation).

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Compressed sensing (sparse recovery) and connections to the
frequent elements problem.
After That: Spectral Methods

- PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.
- Vector dot product, addition, length. Matrix vector multiplication.
- Linear independence, column span, orthogonal bases, rank.

-+ Orthogonal projection, eigendecomposition, linear systems. 5

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
that appears at least f times. Eg, forn =19, k= 3:

Xy X, X3 X, X5 Xg Xy Xg Xq
12 3 3 4 10 3

- At most ni/k = Rk items are ever returned.

- Think of k = 100. Want items appearing > 1% of the time.

- Easy with O(n) space - store the count for each item and
return the one that appears > n/k times.

Applications: Finding viral products/media/searches, frequent
itemset mining, detecting DoS and other attacks, ‘iceberg
queries’ in databases.

MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
at appears at least § times.

Boyer-Moore Voting Algorithm:Misra-Gries Summary:
- Initialize count ¢ := 0, majority element m :=_1Lcounts
Clyeens Cp := 0, elements mq,..., Mp =1
- Fori=1,...,n
- Ifc=0,setm:=x
- Elseifm=x,setc:=c+1.
- Elseifm#x;,setc:=c—1.
- If m; = x; for some j, set ¢; := ¢; + 1.
- Else let t =argming. If ¢ =0, set m == x; and ¢ == 1.
- Else ¢j:= ¢ —1forallj.

7
S TETE o oo :

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements m4,...,my, :=L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming. If ¢ =0, set m; :=x; and ¢; == 1.

- Else ¢j:= ¢ —1forallj.

¢4=0, m=1 m o
c,=0, m;=_L c,=0, my=_L
c3=0, my=1 c3=0, m;=1
X; X, X3 Xy Xg Xg Xy Xg Xg X X, X:
5 12 3 3 4 5 5 10 3 5 12 3

Claim: At the end of the stream, all items with frequency > 2

arn ctAarnA

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > f.

Intuition:
- If there are exactly k items, each appearing exactly n/kr

times, all are stored (since we have k storage slots).

- If there are kR/2 items each appearing > n/k times, there are
< n/2irrelevant items, being inserted into k/2 ‘free slots"

- May cause Z—ﬁ = 7 decrement operations. Few enough that
the heavy items (appearing n/k times each) are still stored.
Anything undesirable about the Misra-Gries output guarantee?

May have false positives - infrequent items that are stored.

APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the
items with frequency > n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k — 1 (should
not be output).

X1 X3 X3 X X5 Xe Xn-n/k+1 X
3 12| 9 |27 | 4 |100] 7 3 s

n/k-1 occurrences

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that
appear at least 7 times and only items that appear at least
(1—¢)- 3 times.

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Misra-Gries Summary: (e-error version)

+ Letr:=[R/€]
- Initialize counts ¢y, ..., ¢ := 0, elements my, ..., m, :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢; == ¢ + 1.
- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢¢ := 1.
- Else ¢j:= ¢ —1forallj.

* Return any m; with ¢; > (1—¢) - 7.

R

Claim: For all m; with true frequency f(m;):

flmj) — % < ¢ < flm)).

Intuition: # items stored r is large, so relatively few decrements.

Implication: If f(m,) > [, then ¢; > (1—¢€) - # so the item Is returned.
Iff(m;) < (1—¢)- %, then¢ < (1—¢)- 7 sotheitemis not returned. ™

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Upshot: The (e, R)-Frequent Items problem can be solved via
the Misra-Gries approach.

- Space usage is [R/e] counts - O (“’%) bits and [R/e] items.
- Deterministic approximation algorithm.

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on

multiple servers. Build arrays A, .. ., As separately and then
just set A=A+ ...+ As.
Xg Xp Xz X4 X
random hash function h random hash fur
m length array A| 0 0 0 0 0 0 0 0o 0 0 m length array A

Will use A[h(x)] to estimate f(x), the frequency of x in the
ctraam le |y - v. — vl

13

COUNT-MIN SKETCH ACCURACY

Xi X Xz Xg o .. X

random hash function h

m length arrayAl 4 2 1 E. 1 B

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.
< AL = FX) +)iy —ngo).

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of count-min sketch array.

14

COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + Y.

y#xh(y)=h(x)

Expected Error: error in frequency estimate

E { > f(y)] = > Pr(h(y) = h(x)) - f(¥)
Y

#x:h(y)=h(x) Y#X
n
=Y =) <

V#X

Markov's inequality: Pr {Zy;ﬁx h(y)=ho f(V) =

2-universal.

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random

hash function. m: size of count-min sketch array. 15

COUNT-MIN SKETCH ACCURACY

Xy Xp X3 Xg e X

random hash function h

m length arrayAl 4 2 1 \Z. 1]

Claim: For any x, with probability at least 2/3,

) < AGO] <) +

To solve the (e, k)-Frequent elements problem, set m = 3£

How can we improve the success probability?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

16

COUNT-MIN SKETCH ACCURACY

Xi Xp Xg X4 .. X

t random hash functions

A, 0 0 0 0 0 0 0 0 0 0

tlength marrays A, | 0 | 0 | 0O 0O 0O O | 0 0 0 O tlength m arrays

Aclo o|o|o0o |0 o]0 0|0]|O

Estimate f(x) with f(x) = min;cq Ai[h;(x)]. (count-min sketch)

The minimum estimate
is always the most accurate since they are all overestimates of

the true frequency! K

COUNT-MIN SKETCH ANALYSIS

X; Xp X3 X4 v Xn

t random hash functions
..., h
A,zs‘Ns 12 1‘3‘4'

tlength m arrays Az

Estimate f(x) by f(x) = minicgg Ailhi(x)]

* For every x and i € [t], we know that for m = O(k/¢), with
probability > 2/3:

n

f09 < A (0] < f00 + -

- What is Pr[f(x) < f(x) < f(x) + €2]? 1—1/3t.
- To get a good estimate with probability > 1— 6, sett = 0(log(1/9)). 18

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ! with probability > 1—4in
O (log(1/d) - R/€) space.

- Accurate enough to solve the (e, R)-Frequent elements
problem.

- Actually identifying the frequent elements quickly requires a
little bit of further work.
One approach: Store potential frequent elements as they
come in. At step i remove any elements whose estimated
frequency is below i/k. Store at most O(R) items at once and
have all items with frequency > n/k stored at the end of the
stream.

19

Questions on Frequent Elements?

20

