COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 8 tinyurl.com/musco2020

- Problem Set 1 was due this past Friday. Will be graded by next week.
- \cdot Problem Set 2 to be released end of this week and due \sim 3/6.

- \cdot We take academic honestly on the problem sets seriously.
- If caught copying from another group (or allowing someone to copy your work), copying from problem sets or answer keys from past semesters, etc. you will receive a 0% on the problem set and 5% off your final course grade.
- Even if one group member copies, the rest of the group is at risk of the same deduction. Don't just split up the problems and not work on them together.
- You can change your problem set group from assignment to assignment.

SUMMARY

Last Class:

- SimHash for cosine similarity
- Applications to e.g., approximate neural network computation.
- Introduction to the Frequent Elements (heavy-hitters) problem in data streams.
- The Boyer-Moore voting algorithm for majority.

This Class:

- Extend Boyer-Moore to the general Frequent Elements: problem: Misra-Gries summaries.
- Count-min sketch (random hashing for frequent element estimation).

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- Compressed sensing (sparse recovery) and connections to the frequent elements problem.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

- · Vector dot product, addition, length. Matrix vector multiplication.
- Linear independence, column span, orthogonal bases, rank.
- Orthogonal projection, eigendecomposition, linear systems.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times. E.g., for n = 9, k = 3:

x ₁	x ₂	X ₃	x ₄	X 5	x ₆	х ₇	х ₈	x ₉
5	12	3	3	4	5	5	10	3

- At most $\frac{n}{n/k} = k$ items are ever returned.
- Think of k = 100. Want items appearing $\ge 1\%$ of the time.
- Easy with O(n) space store the count for each item and return the one that appears $\geq n/k$ times.

Applications: Finding viral products/media/searches, frequent itemset mining, detecting DoS and other attacks, 'iceberg queries' in databases.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

Boyer-Moore Voting Algorithm:Misra-Gries Summary:

• Initialize count c := 0, majority element $m := \perp counts$

 $c_1,\ldots,c_k:=0$, elements $m_1,\ldots,m_k:=\perp$

- For i = 1, ..., n
 - If c = 0, set $m := x_i$
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

c ₃ =0, r	n₁=⊥	ſ			I	Γ	I	Γ	c ₃ =0, n	n₁=⊥	
x1	x ₂	X ₃	x ₄	x 5	x ₆	x7	x ₈	x ₉	x 1	x ₂	×
5	12	-	-	4	5	5	10	2	5	12	

Claim: At the end of the stream, all items with frequency $\geq \frac{n}{k}$

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly *k* items, each appearing exactly *n/k* times, all are stored (since we have *k* storage slots).
- If there are k/2 items each appearing $\ge n/k$ times, there are $\le n/2$ irrelevant items, being inserted into k/2 'free slots'.
- May cause $\frac{n/2}{k/2} = \frac{n}{k}$ decrement operations. Few enough that the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee? May have false positives – infrequent items that are stored. **Issue:** Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

• In fact, no algorithm using o(n) space can output just the items with frequency $\ge n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k - 1 (should not be output).

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

Misra-Gries Summary: (ϵ -error version)

- Let $r := \lceil k/\epsilon \rceil$
- Initialize counts $c_1, \ldots, c_r := 0$, elements $m_1, \ldots, m_r := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.
- Return any m_j with $c_j \ge (1 \epsilon) \cdot \frac{n}{k}$.

Claim: For all m_j with true frequency $f(m_j)$:

$$f(m_j) - \frac{\epsilon n}{k} \leq c_j \leq f(m_j).$$

Intuition: # items stored r is large, so relatively few decrements.

Implication: If $f(m_j) \ge \frac{n}{k}$, then $c_j \ge (1 - \epsilon) \cdot \frac{n}{k}$ so the item is returned. If $f(m_j) < (1 - \epsilon) \cdot \frac{n}{k}$, then $c_j < (1 - \epsilon) \cdot \frac{n}{k}$ so the item is not returned.

Upshot: The (ϵ, k) -Frequent Items problem can be solved via the Misra-Gries approach.

- Space usage is $\lceil k/\epsilon \rceil$ counts $O\left(\frac{k \log n}{\epsilon}\right)$ bits and $\lceil k/\epsilon \rceil$ items.
- Deterministic approximation algorithm.

random hash function h

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

• A major advantage: easily distributed to processing on multiple servers. Build arrays A_1, \ldots, A_s separately and then just set $A := A_1 + \ldots + A_s$.

$$(\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \ \dots \ \mathbf{x}_n$$

random hash fu

m length array **A** 0 0 0 0 0 0 0 0 0 0 0 0 0

m length array A

Will use $A[\mathbf{h}(x)]$ to estimate f(x), the frequency of x in the stream $|\mathbf{e}| \{x_i \cdot x_i = x\}|$

COUNT-MIN SKETCH ACCURACY

Use $A[\mathbf{h}(x)]$ to estimate f(x)

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

- $A[\mathbf{h}(x)]$ counts the number of occurrences of any y with $\mathbf{h}(y) = \mathbf{h}(x)$, including x itself.
- $A[\mathbf{h}(x)] = f(x) + \sum_{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)} f(y).$

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of count-min sketch array.

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)}} f(y) \quad .$$

Expected Error:

error in frequency estimate

$$\mathbb{E}\left[\sum_{y \neq x: h(y)=h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{3n}{m}$?

Markov's inequality: $\Pr\left[\sum_{y \neq x: h(y) = h(x)} f(y) \ge \frac{3n}{m}\right] \le \frac{1}{3}$.

What property of h is required to show this bound? 2-universal.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of count-min sketch array.

COUNT-MIN SKETCH ACCURACY

Claim: For any x, with probability at least 2/3,

$$f(x) \le A[\mathbf{h}(x)] \le f(x) + \frac{3n}{m} \cdot \frac{\epsilon n}{k}$$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{3k}{\epsilon}$. How can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of count-min sketch array.

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

COUNT-MIN SKETCH ANALYSIS

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = O(k/\epsilon)$, with probability $\geq 2/3$:

$$f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$$

- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 1/3^t$.
- To get a good estimate with probability $\geq 1 \delta$, set $t = O(\log(1/\delta))$. 18

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

- Accurate enough to solve the (ϵ, k) -Frequent elements problem.
- Actually identifying the frequent elements quickly requires a little bit of further work.

One approach: Store potential frequent elements as they come in. At step *i* remove any elements whose estimated frequency is below *i/k*. Store at most O(k) items at once and have all items with frequency $\ge n/k$ stored at the end of the stream.

Questions on Frequent Elements?