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LOGISTICS

- Problem Set 1 was due this past Friday. Will be graded by
next week.

- Problem Set 2 to be released end of this week and due ~ 3/6.
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- We take academic honestly on the problem sets seriously.

- If caught copying from another group (or allowing someone
to copy your work), copying from problem sets or answer
keys from past semesters, etc. you will receive a 0% on the
problem set and 5% off your final course grade.

- Even if one group member copies, the rest of the group is at
risk of the same deduction. Don't just split up the problems
and not work on them together.

- You can change your problem set group from assignment to
assignment.
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Last Class:

- SimHash for cosine similarity

- Applications to e.g., approximate neural network
computation.

- Introduction to the Frequent Elements (heavy-hitters)
problem in data streams.

- The Boyer-Moore voting algorithm for majority.

This Class:

- Extend Boyer-Moore to the general Frequent Elements:
problem: Misra-Gries summaries.

- Count-min sketch (random hashing for frequent element
estimation).
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UPCOMING

Next Few Classes:

* Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Compressed sensing (sparse recovery) and connections to the
frequent elements problem.
After That: Spectral Methods

-+ PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.
* Vector dot product, addition, length. Matrix vector multiplication.
* Linear independence, column span, orthogonal bases, rank.

+ Orthogonal projection, eigendecomposition, linear systems. 5
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k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
that appears at least  times. Eg, forn =9, k=3:

X, X, X3 X4 Xs X Xy Xg Xq
12 3 3 4 10 3

- At most ni/,? = Rk items are ever returned.

- Think of k = 100. Want items appearing > 1% of the time.

- Easy with O(n) space - store the count for each item and
return the one that appears > n/k times.

Applications: Finding viral products/media/searches, frequent
itemset mining, detecting DoS and other attacks, ‘iceberg
queries’ in databases.



MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least  times.



MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least { times.

Boyer-Moore Voting Algorithm:
- Initialize count ¢ := 0, majority element m :=_1 /<\ O/l
- Fori=1,...,n

- Ifc=0,setm:=x
- Elseifm=x,setc:=c+1.
- Elseifm#£x;, setc:=c—1.

c=1, m=3 c=1, m=4
c=0, m=1 ¢c=0, m=3 c=0, m=4

X X2 X3 Xa X5 X5 X7 Xg ) X10

5 12 3 5 4 5 5 10 5 5 7




MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least { times.

Misra-Gries Summary:
- Initialize count ¢ := 0, majority element m :=_1
- Fori=1,...,n

- Ifc=0,setm:=x

- Elseifm=x,setc:=c+1.

- Elseifm#£x;, setc:=c—1.

c=1, m=3 c=1, m=4
c=0, m=1 ¢c=0, m=3 c=0, m=4

X X2 X3 Xa X5 X5 X7 Xg ) X10

5 12 3 5 4 5 5 10 5 5 7




MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least { times.

Misra-Gries Summary:

- Initialize counts ¢4, ..., Cp:= 0, elements my, ..., my, =1
- Fori=1,...,n

- Ifc=0,setm:=x

- Elseifm=x,setc:=c+1.

- Elseifm#x;,setc:=c—1.

c=1, m=3 c=1, m=4
c=0, m=1 ¢c=0, m=3 c=0, m=4

X X2 X3 Xa X5 X5 X7 Xg ) X10

5 12 3 5 4 5 5 10 5 5 7




MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least { times.

Misra-Gries Summary:

- Initialize counts ¢y, .. ., Cp := 0, elements my,..., mp =1
- Fori=1,...,n

- If m; = x; for Som'e Jysetgi=¢+1

- Else lett=argming;. Ifgr =0,setmy:=x;and ¢t := 1.

- Else ¢ :=¢; —1forallj.
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MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall ).

>0 - (
-—_— - e
c2m=5 @@ 3 ? D)
c,=1,m=10 @
em2m=3 00

Xy X, X3 Xy X5 Xg Xy Xg

X
5 M 3 3 Y 5 5 | 3

Claim: At the end of the stream, all items with frequency > 2
are stored. 8
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Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > %
Intuition:

- If there are exactly k items, each appearing exactly n/k
times, all are stored (since we have k storage slots).

- If there are R/2 items each appearing > n/k times, there are
< n/2 irrelevant items, being inserted into k/2 ‘free slots.
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MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > %

Intuition:
- If there are exactly k items, each appearing exactly n/k

times, all are stored (since we have k storage slots).

- If there are R/2 items each appearing > n/k times, there are
< n/2 irrelevant items, being inserted into k/2 ‘free slots.

- May cause Zﬁ = 7 decrement operations. Few enough that
the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee?
May have false positives - infrequent items that are stored.
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Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.
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Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the
items with frequency > n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k — 1 (should
not be output).

Xy Xz X3 Xg X5 Xg Xn-n/k+1 Xn
3 12 9 27 | 4 100 | © 3 T3

n/k-1 occurrences
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APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the
items with frequency > n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k — 1 (should
not be output).

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that
appear at least § times and only items that appear at least
(1—¢)- 7 times.

- An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1—¢) - %, #] no output guarantee.

10



APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Misra-Gries Summary: (e-error version)
+ Letr:=[R/e
- Initialize counts ¢y,...,¢ := 0, elements my,...,m, :=_1.
_\—/—\
« Fori=1,...,n
- Ifm; = x; for some j, set ¢; :=¢; + 1.
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- Else ¢ :=¢;—1forall ).

* Return any m; with ¢; > (1—¢) - 1.
S
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Misra-Gries Summary: (e-error version)
+ Letr:=[R/e
- Initialize counts ¢y,...,¢ := 0, elements my,...,m, :=_L.
« Fori=1,...,n
- Ifm; = x; for some j, set ¢; :=¢; + 1.
- Else lett =argming;. If ¢; =0, set m; := x; and ¢ :=1.
- Else ¢ :=¢;—1forall ).

* Return any m; with ¢; > (1 —¢) - 1.

Claim: For all m; with true frequency f(m;):

flm;) — % < ¢ < f(m).

Intuition: # items stored r is large, so relatively few decrements.

Implication: If f(m,) > 7, then ¢; > (1—¢€) - # so the item Is returned.

— R

Iff(m;) < (1—¢) 7, then¢ < (1—¢)- 7 sotheitemis notreturned. T



APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Upshot: The (e, R)-Frequent Items problem can be solved via
the Misra-Gries approach.
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Upshot: The (e, R)-Frequent Items problem can be solved via
the Misra-Gries approach.

Y-
- Space usage is [R/e] counts - O (@) bits and [R/e] items.

- Deterministic approximation algorithm.
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A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.
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FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers. Build arrays Ay, ..., As separately and then
just set A:= A1+ ...+ As.

random hash function h

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, |[{xj : x; = x}|. 13




COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x). Why?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.
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COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.
“ AThC)] = f(X) + 22y 2h(y)=heo FV)-

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

14



