COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.
Lecture 8

LOGISTICS

- Problem Set 1 was due this past Friday. Will be graded by
next week.

- Problem Set 2 to be released end of this week and due ~ 3/6.

ACADEMIC HONESTY ON PROBLEM SETS

- We take academic honestly on the problem sets seriously.

ACADEMIC HONESTY ON PROBLEM SETS

- We take academic honestly on the problem sets seriously.

- If caught copying from another group (or allowing someone
to copy your work), copying from problem sets or answer
keys from past semesters, etc. you will receive a 0% on the
problem set and 5% off your final course grade.

ACADEMIC HONESTY ON PROBLEM SETS

- We take academic honestly on the problem sets seriously.

- If caught copying from another group (or allowing someone
to copy your work), copying from problem sets or answer
keys from past semesters, etc. you will receive a 0% on the
problem set and 5% off your final course grade.

- Even if one group member copies, the rest of the group is at
risk of the same deduction. Don't just split up the problems
and not work on them together.

ACADEMIC HONESTY ON PROBLEM SETS

- We take academic honestly on the problem sets seriously.

- If caught copying from another group (or allowing someone
to copy your work), copying from problem sets or answer
keys from past semesters, etc. you will receive a 0% on the
problem set and 5% off your final course grade.

- Even if one group member copies, the rest of the group is at
risk of the same deduction. Don't just split up the problems
and not work on them together.

- You can change your problem set group from assignment to
assignment.

SUMMARY

Last Class:

SUMMARY

Last Class:

- SimHash for cosine similarity

- Applications to e.g., approximate neural network
computation.

- Introduction to the Frequent Elements (heavy-hitters)
problem in data streams.

- The Boyer-Moore voting algorithm for majority.

SUMMARY

Last Class:

- SimHash for cosine similarity

- Applications to e.g., approximate neural network
computation.

- Introduction to the Frequent Elements (heavy-hitters)
problem in data streams.

- The Boyer-Moore voting algorithm for majority.

This Class:

- Extend Boyer-Moore to the general Frequent Elements:
problem: Misra-Gries summaries.

- Count-min sketch (random hashing for frequent element
estimation).

UPCOMING

Next Few Classes:

* Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Compressed sensing (sparse recovery) and connections to the
frequent elements problem.

UPCOMING

Next Few Classes:

* Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Compressed sensing (sparse recovery) and connections to the
frequent elements problem.
After That: Spectral Methods

-+ PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.

UPCOMING

Next Few Classes:

* Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

- Compressed sensing (sparse recovery) and connections to the
frequent elements problem.
After That: Spectral Methods

-+ PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.
* Vector dot product, addition, length. Matrix vector multiplication.
* Linear independence, column span, orthogonal bases, rank.

+ Orthogonal projection, eigendecomposition, linear systems. 5

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
that appears at least times. Eg, forn =9, k=3:

X, X, X3 X4 Xs X Xy Xg Xq

5 12 3 3 4 5 5 10 3

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
that appears at least times. Eg, forn =9, k=3:

X, X, X3 X4 Xs X Xy Xg Xq
5 12 3 3 4 5 5 10 3

- At most ni/,? = Rk items are ever returned.

- Think of k = 100. Want items appearing > 1% of the time.

- Easy with O(n) space - store the count for each item and
return the one that appears > n/k times.

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
that appears at least times. Eg, forn =9, k=3:

X, X, X3 X4 Xs X Xy Xg Xq
12 3 3 4 10 3

- At most ni/,? = Rk items are ever returned.

- Think of k = 100. Want items appearing > 1% of the time.

- Easy with O(n) space - store the count for each item and
return the one that appears > n/k times.

Applications: Finding viral products/media/searches, frequent
itemset mining, detecting DoS and other attacks, ‘iceberg
queries’ in databases.

MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least times.

MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least { times.

Boyer-Moore Voting Algorithm:
- Initialize count ¢ := 0, majority element m :=_1 /<\ O/l
- Fori=1,...,n

- Ifc=0,setm:=x
- Elseifm=x,setc:=c+1.
- Elseifm#£x;, setc:=c—1.

c=1, m=3 c=1, m=4
c=0, m=1 ¢c=0, m=3 c=0, m=4

X X2 X3 Xa X5 X5 X7 Xg) X10

5 12 3 5 4 5 5 10 5 5 7

MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least { times.

Misra-Gries Summary:
- Initialize count ¢ := 0, majority element m :=_1
- Fori=1,...,n

- Ifc=0,setm:=x

- Elseifm=x,setc:=c+1.

- Elseifm#£x;, setc:=c—1.

c=1, m=3 c=1, m=4
c=0, m=1 ¢c=0, m=3 c=0, m=4

X X2 X3 Xa X5 X5 X7 Xg) X10

5 12 3 5 4 5 5 10 5 5 7

MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least { times.

Misra-Gries Summary:

- Initialize counts ¢4, ..., Cp:= 0, elements my, ..., my, =1
- Fori=1,...,n

- Ifc=0,setm:=x

- Elseifm=x,setc:=c+1.

- Elseifm#x;,setc:=c—1.

c=1, m=3 c=1, m=4
c=0, m=1 ¢c=0, m=3 c=0, m=4

X X2 X3 Xa X5 X5 X7 Xg) X10

5 12 3 5 4 5 5 10 5 5 7

MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
at appears at least { times.

Misra-Gries Summary:

- Initialize counts ¢y, .. ., Cp := 0, elements my,..., mp =1
- Fori=1,...,n

- If m; = x; for Som'e Jysetgi=¢+1

- Else lett=argming;. Ifgr =0,setmy:=x;and ¢t := 1.

- Else ¢ :=¢; —1forallj.

c=1, m=3 c=1, m=4 -
BT o =

c=0, m=1 _ c=0, m=3 c=0, m=4 _

X1 X2 X3 Xa Xs X X7 Xg X9 X10

5 12 3 5 4 5 5 10 5 5 7

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n
- Ifm; = x; for some j, set ¢; :=¢; + 1.
- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.
- Else ¢ :=¢;—1forall).

¢4=0, my=1

C,=0, my=1

Cc3=0, m3=_L
Xy Xy X3 X4 Xs Xg X7 Xg X9
12 3 3 4 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; =x; for some j, set ¢;:=¢ + 1.

~Ese lett=argming. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

c,=0, my=L

c3=0, my=L
X3 X2 X3 Xg X5 Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., ¢, := 0, elements my, ..

- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

L, M =1,

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

c=1,m=12 @

€3=0, mj=L
X3 X2 X3 Xg X5 Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

=1, m=12 @
X3 X2 X3 Xg X5 Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

=1, m=12 @
X3 X2 X3 Xg X5 Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

c,=0, my=12
X3 X2 X3 Xg X5 Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

c,=0, my=12
X3 X2 X3 Xg X5 Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

c,=0, my=12
X3 X2 X3 Xg X5 Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

c,=1,m=10 @
X3 X2 X3 Xg X5 Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

c2m=5 @@
c,=1,m=10 @
e2m=3 00
Xy X, X3 Xg X Xg X; Xg X9
5 12 3 3 4 5 5 10 3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y, ..., C, := 0, elements mq,...,my :=1.
- Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢; :=1.

- Else ¢ :=¢;—1forall).

>0 - (
-—_— - e
c2m=5 @@ 3 ? D)
c,=1,m=10 @
em2m=3 00

Xy X, X3 Xy X5 Xg Xy Xg

X
5 M 3 3 Y 5 5 | 3

Claim: At the end of the stream, all items with frequency > 2
are stored. 8

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > %

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > %

Intuition:

- If there are exactly k items, each appearing exactly n/k
times, all are stored (since we have k storage slots).

o5 N 2% 5
R
7 |-
|

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > %
Intuition:

- If there are exactly k items, each appearing exactly n/k
times, all are stored (since we have k storage slots).

- If there are R/2 items each appearing > n/k times, there are
< n/2 irrelevant items, being inserted into k/2 ‘free slots.

L1525 19 3% 31Uy

—

LN -
o

—_—

ff-ﬂvédg
3

in (}L‘\(.{

P

_

N
[

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > %

Intuition:
- If there are exactly k items, each appearing exactly n/k

times, all are stored (since we have k storage slots).

- If there are R/2 items each appearing > n/k times, there are
< n/2 irrelevant items, being inserted into k/2 ‘free slots.

- May cause ZZ = 7 decrement operations. Few enough that
the heavy items (appearing n/k times each) are still stored.

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > %

Intuition:
- If there are exactly k items, each appearing exactly n/k

times, all are stored (since we have k storage slots).

- If there are R/2 items each appearing > n/k times, there are
< n/2 irrelevant items, being inserted into k/2 ‘free slots.

- May cause Zﬁ = 7 decrement operations. Few enough that
the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee?

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > %

Intuition:
- If there are exactly k items, each appearing exactly n/k

times, all are stored (since we have k storage slots).

- If there are R/2 items each appearing > n/k times, there are
< n/2 irrelevant items, being inserted into k/2 ‘free slots.

- May cause Zﬁ = 7 decrement operations. Few enough that
the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee?
May have false positives - infrequent items that are stored.

APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

10

APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the
items with frequency > n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k — 1 (should
not be output).

Xy Xz X3 Xg X5 Xg Xn-n/k+1 Xn
3 12 9 27 | 4 100 | © 3 T3

n/k-1 occurrences

10

APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the
items with frequency > n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k — 1 (should
not be output).

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that
appear at least § times and only items that appear at least
(1—¢)- 7 times.

10

APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the
items with frequency > n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k — 1 (should
not be output).

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that
appear at least § times and only items that appear at least
(1—¢)- 7 times.

- An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1—¢) - %, #] no output guarantee.

10

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Misra-Gries Summary: (e-error version)
+ Letr:=[R/e
- Initialize counts ¢y,...,¢ := 0, elements my,...,m, :=_1.
_\—/—\
« Fori=1,...,n
- Ifm; = x; for some j, set ¢; :=¢; + 1.

- Else lett =argming;. If ¢; =0, set m; := x; and ¢ :=1.
- Else ¢ :=¢;—1forall).

* Return any m; with ¢; > (1—¢) - 1.
S

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Misra-Gries Summary: (e-error version)

+ Letr:=[R/e
- Initialize counts ¢y,...,¢ := 0, elements my,...,m, :=_L.
« Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.
- Else lett =argming;. If ¢; =0, set m; := x; and ¢ :=1.
- Else ¢ :=¢;—1forall).

* Return any m; with ¢; > (1 —¢) - 1.

Claim: For all m; with true frequency f(m;):

flm;) — % < ¢ < f(m).
—_—

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Misra-Gries Summary: (e-error version)

+ Letr:=[R/e
- Initialize counts ¢y,...,¢ := 0, elements my,...,m, :=_L.
« Fori=1,...,n

- Ifm; = x; for some j, set ¢; :=¢; + 1.
- Else lett =argming;. If ¢; =0, set m; := x; and ¢ :=1.
- Else ¢ :=¢;—1forall).

* Return any m; with ¢; > (1 —¢) - 1.

Claim: For all m; with true frequency f(m;):

flm;) — % < ¢ < f(m).

Intuition: # items stored r is large, so relatively few decrements.

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Misra-Gries Summary: (e-error version)
+ Letr:=[R/e
- Initialize counts ¢y,...,¢ := 0, elements my,...,m, :=_L.
« Fori=1,...,n
- Ifm; = x; for some j, set ¢; :=¢; + 1.
- Else lett =argming;. If ¢; =0, set m; := x; and ¢ :=1.
- Else ¢ :=¢;—1forall).

* Return any m; with ¢; > (1 —¢) - 1.

Claim: For all m; with true frequency f(m;):

flm;) — % < ¢ < f(m).

Intuition: # items stored r is large, so relatively few decrements.

Implication: If f(m,) > 7, then ¢; > (1—¢€) - # so the item Is returned.

— R

Iff(m;) < (1—¢) 7, then¢ < (1—¢)- 7 sotheitemis notreturned. T

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Upshot: The (e, R)-Frequent Items problem can be solved via
the Misra-Gries approach.

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES
l—{YﬁS n
K k) /K

Upshot: The (e, R)-Frequent Items problem can be solved via
the Misra-Gries approach.

Y-
- Space usage is [R/e] counts - O (@) bits and [R/e] items.

- Deterministic approximation algorithm.

Seer dn F e ta I8 Sad o)
pQer ks K
¢

Y

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

random hash function h

m length array A| 0 0 0 0 0 0 0 0 0 0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

random hash function h \

m length array A| 0 1 O 0 0 0 0 0 0 0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

random hash functioy

m length array A| 1 1 @ 0 0 0 0 0 0 0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

random hash functioy

m length array A| 1 1 0 0 0 1 0 0 0 0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

random hash function h

m length array A| 1 2 0 0 0 1 0 0 0 0

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

random hash function h

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

random hash function h

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, |[{xj : x; = x}|. 13

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers. Build arrays Ay, ..., As separately and then
just set A:= A1+ ...+ As.

random hash function h

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, |[{xj : x; = x}|. 13

COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

14

COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x). Why?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

14

COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

14

COUNT-MIN SKETCH ACCURACY

Xy Xp Xz Xq e Xn

random hash function h

mIengtharrayAl 4 2 1 | 6 . 1 2]

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.
“ AThC)] = f(X) + 22y 2h(y)=heo FV)-

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

14

