COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 8

LOGISTICS

- Problem Set 1 was due this past Friday. Will be graded by next week.
- Problem Set 2 to be released end of this week and due $\sim 3/6$.

 \cdot We take academic honestly on the problem sets seriously.

- · We take academic honestly on the problem sets seriously.
- If caught copying from another group (or allowing someone to copy your work), copying from problem sets or answer keys from past semesters, etc. you will receive a 0% on the problem set and 5% off your final course grade.

- · We take academic honestly on the problem sets seriously.
- If caught copying from another group (or allowing someone to copy your work), copying from problem sets or answer keys from past semesters, etc. you will receive a 0% on the problem set and 5% off your final course grade.
- Even if one group member copies, the rest of the group is at risk of the same deduction. Don't just split up the problems and not work on them together.

- · We take academic honestly on the problem sets seriously.
- If caught copying from another group (or allowing someone to copy your work), copying from problem sets or answer keys from past semesters, etc. you will receive a 0% on the problem set and 5% off your final course grade.
- Even if one group member copies, the rest of the group is at risk of the same deduction. Don't just split up the problems and not work on them together.
- You can change your problem set group from assignment to assignment.

SUMMARY

Last Class:

SUMMARY

Last Class:

- · SimHash for cosine similarity
- Applications to e.g., approximate neural network computation.
- Introduction to the Frequent Elements (heavy-hitters) problem in data streams.
- The Boyer-Moore voting algorithm for majority.

Last Class:

- · SimHash for cosine similarity
- Applications to e.g., approximate neural network computation.
- Introduction to the Frequent Elements (heavy-hitters) problem in data streams.
- The Boyer-Moore voting algorithm for majority.

This Class:

- Extend Boyer-Moore to the general Frequent Elements: problem: Misra-Gries summaries.
- Count-min sketch (random hashing for frequent element estimation).

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- Compressed sensing (sparse recovery) and connections to the frequent elements problem.

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- Compressed sensing (sparse recovery) and connections to the frequent elements problem.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- · Spectral clustering and spectral graph theory.

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- Compressed sensing (sparse recovery) and connections to the frequent elements problem.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- · Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

- · Vector dot product, addition, length. Matrix vector multiplication.
- · Linear independence, column span, orthogonal bases, rank.
- · Orthogonal projection, eigendecomposition, linear systems.

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times. E.g., for n = 9, k = 3:

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times. E.g., for n = 9, k = 3:

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · At most $\frac{n}{n/k} = k$ items are ever returned.
- Think of k = 100. Want items appearing $\geq 1\%$ of the time.
- Easy with O(n) space store the count for each item and return the one that appears $\geq n/k$ times.

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times. E.g., for n = 9, k = 3:

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · At most $\frac{n}{n/k} = k$ items are ever returned.
- Think of k = 100. Want items appearing $\geq 1\%$ of the time.
- Easy with O(n) space store the count for each item and return the one that appears $\geq n/k$ times.

Applications: Finding viral products/media/searches, frequent itemset mining, detecting DoS and other attacks, 'iceberg queries' in databases.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

Boyer-Moore Voting Algorithm:

- · Initialize count c := 0, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - · If c = 0, set $m := x_i$
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

- · Initialize count c := 0, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - · If c = 0, set $m := x_i$
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$
- For $i = 1, \ldots, n$
 - · If c = 0, set $m := x_i$
 - Else if $m = x_i$, set c := c + 1.
 - Else if $m \neq x_i$, set c := c 1.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$
- For $i = 1, \ldots, n$
 - · If $\underline{m}_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

MISRA-GRIES ALGORITHM

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

$$c_1=0, m_1=\bot$$

$$c_2$$
=0, m

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - · (Else let $t = \arg \min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

$$c_1=1, m_1=5$$
 $c_2=0, m_1=\bot$

$$c_3$$
=0, m_1 = \perp

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	x ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

$$c_3$$
=0, m_3 = \pm

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	x ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

$\mathbf{x_1}$	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X 9
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	x ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

c₂=0, m₁=12

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

$\mathbf{x_1}$	X ₂	X ₃	X ₄	X ₅	x ₆	x ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - If $m_i = x_i$ for some j, set $c_i := c_i + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- · Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For i = 1, ..., n
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.

Claim: At the end of the stream, all items with frequency $\geq \frac{n}{k}$ are stored.

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

• If there are exactly k items, each appearing exactly n/k times, all are stored (since we have k storage slots).

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly k items, each appearing exactly n/k times, all are stored (since we have k storage slots).
- If there are k/2 items each appearing $\geq n/k$ times, there are $\leq n/2$ irrelevant items, being inserted into k/2 'free slots'.

$$\frac{5}{2} \cdot \frac{5}{1} \cdot \frac{5}{2} \cdot \frac{5}{1} \cdot \frac{10}{10} \cdot \frac{3}{10} \cdot \frac{1}{3} \cdot \frac{3}{10} \cdot \frac{10}{10} \cdot \frac{3}{10} \cdot \frac{1}{3} \cdot \frac{3}{10} \cdot \frac{10}{10} \cdot \frac{10}{10$$

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly k items, each appearing exactly n/k times, all are stored (since we have k storage slots).
- If there are k/2 items each appearing $\geq n/k$ times, there are $\leq n/2$ irrelevant items, being inserted into k/2 'free slots'.
- May cause $\frac{n/2}{k/2} = \frac{n}{k}$ decrement operations. Few enough that the heavy items (appearing n/k times each) are still stored.

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly k items, each appearing exactly n/k times, all are stored (since we have k storage slots).
- If there are k/2 items each appearing $\geq n/k$ times, there are $\leq n/2$ irrelevant items, being inserted into k/2 'free slots'.
- May cause $\frac{n/2}{k/2} = \frac{n}{k}$ decrement operations. Few enough that the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee?

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly k items, each appearing exactly n/k times, all are stored (since we have k storage slots).
- If there are k/2 items each appearing $\geq n/k$ times, there are $\leq n/2$ irrelevant items, being inserted into k/2 'free slots'.
- May cause $\frac{n/2}{k/2} = \frac{n}{k}$ decrement operations. Few enough that the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee? May have false positives – infrequent items that are stored.

Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

• In fact, no algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆		X _{n-n/k+1}		X _n
3	12	9	27	4	101	•••	3		3
							n/k-1 c	ccurre	ences

Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

• In fact, no algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

• In fact, no algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

· An example of relaxing to a 'promise problem': for items with frequencies in $[(1 - \epsilon) \cdot \frac{n}{k}, \frac{n}{k}]$ no output guarantee.

Misra-Gries Summary: (ϵ -error version)

- Let $r := \lceil k/\epsilon \rceil$
- · Initialize counts $c_1, \ldots, c_r := 0$, elements $\underline{m_1}, \ldots, \underline{m_r} := \bot$.
- For $i = 1, \ldots, n$
 - · If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.
- Return any m_j with $c_j \ge (1 \epsilon) \cdot \frac{n}{k}$.

Misra-Gries Summary: (ϵ -error version)

- Let $r := \lceil k/\epsilon \rceil$
- · Initialize counts $c_1, \ldots, c_r := 0$, elements $m_1, \ldots, m_r := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.
- Return any m_j with $c_j \ge (1 \epsilon) \cdot \frac{n}{k}$.

Claim: For all m_j with true frequency $f(m_j)$:

$$f(m_j) - \frac{\epsilon n}{k} \leq c_j \leq f(m_j).$$

Misra-Gries Summary: (ϵ -error version)

- Let $r := \lceil k/\epsilon \rceil$
- · Initialize counts $c_1, \ldots, c_r := 0$, elements $m_1, \ldots, m_r := \bot$.
- For $i = 1, \ldots, n$
 - If $m_i = x_i$ for some j, set $c_i := c_i + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j 1$ for all j.
- Return any m_j with $c_j \ge (1 \epsilon) \cdot \frac{n}{k}$.

Claim: For all m_i with true frequency $f(m_i)$:

$$f(m_j) - \frac{\epsilon n}{k} \le c_j \le f(m_j).$$

Intuition: # items stored r is large, so relatively few decrements.

Misra-Gries Summary: (ϵ -error version)

- Let $r := \lceil k/\epsilon \rceil$
- · Initialize counts $c_1, \ldots, c_r := 0$, elements $m_1, \ldots, m_r := \bot$.
- For $i = 1, \ldots, n$
 - · If $m_i = x_i$ for some j, set $c_i := c_i + 1$.
 - Else let $t = \arg\min c_i$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_i := c_i 1$ for all j.
- Return any m_i with $c_i \ge (1 \epsilon) \cdot \frac{n}{k}$.

Claim: For all m_i with true frequency $f(m_i)$:

$$f(m_j) - \frac{\epsilon n}{b} \le c_j \le f(m_j).$$

Intuition: # items stored r is large, so relatively few decrements.

Implication: If $f(m_j) \ge \frac{n}{k}$, then $c_j \ge (1 - \epsilon) \cdot \frac{n}{k}$ so the item is returned. If $f(m_i) < (1 - \epsilon) \cdot \frac{n}{k}$, then $c_j < (1 - \epsilon) \cdot \frac{n}{k}$ so the item is not returned.

Upshot: The (ϵ, k) -Frequent Items problem can be solved via the Misra-Gries approach.

$$\left(\left(1-\varepsilon\right)\left(\frac{n}{k}\right),\frac{n}{k}\right)$$

Upshot: The (ϵ, k) -Frequent Items problem can be solved via the Misra-Gries approach.

- Space usage is $\lceil k/\epsilon \rceil$ counts $O\left(\frac{k \log n}{\epsilon}\right)$ bits and $\lceil k/\epsilon \rceil$ items.
- · Deterministic approximation algorithm.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

 A major advantage: easily distributed to processing on multiple servers.

Will use $A[\mathbf{h}(x)]$ to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

• A major advantage: easily distributed to processing on multiple servers. Build arrays A_1, \ldots, A_s separately and then just set $A := A_1 + \ldots + A_s$.

Will use $A[\mathbf{h}(x)]$ to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

Use $A[\mathbf{h}(x)]$ to estimate f(x)

Use $A[\mathbf{h}(x)]$ to estimate f(x)

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

Use $A[\mathbf{h}(x)]$ to estimate f(x)

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

• A[h(x)] counts the number of occurrences of any y with h(y) = h(x), including x itself.

Use $A[\mathbf{h}(x)]$ to estimate f(x)

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

- A[h(x)] counts the number of occurrences of any y with h(y) = h(x), including x itself.
- · $A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y).$