
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 7

0

logistics

• Problem Set 1 is due tomorrow at 8pm in Gradescope.
• No class next Tuesday (it’s a Monday at UMass).
• Talk Today: Vatsal Sharan at 4pm in CS 151. Modern
Perspectives on Classical Learning Problems: Role of Memory
and Data Amplification.

1

summary

Last Class: Hashing for Jaccard Similarity

• MinHash for estimating the Jaccard similarity.
• Locality sensitive hashing (LSH).
• Application to fast similarity search.

This Class:

• Finish up MinHash and LSH.
• The Frequent Elements (heavy-hitters) problem.
• Misra-Gries summaries.

2

jaccard similarity

Jaccard Similarity: J(A,B) = |A∩B|
|A∪B| =

shared elements
total elements .

Two Common Use Cases:

• Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high similarity to
anything in the database. Naively Ω(n) time.

• All-pairs Similarity Search: Have n different sets/bit strings.
Want to find all pairs with high similarity. Naively Ω(n2) time.

3

minhashing

MinHash(A) = mina∈A h(a) where h : U→ [0, 1] is a random hash.

Locality Sensitivity: Pr[MinHash(A) = MinHash(B)] = J(A,B).

Represents a set with a single number that captures Jaccard
similarity information!

Given a collision free hash function g : [0, 1] → [m],

Pr [g(MinHash(A)) = g(MinHash(B))] = J(A,B).

What is Pr [g(MinHash(A)) = g(MinHash(B))] if g is not collision free?
Will be a bit larger than J(A,B). 4

lsh for similarity search

When searching for similar items only search for matches that land
in the same hash bucket.

• False Negative: A similar pair doesn’t appear in the same bucket.
• False Positive: A dissimilar pair is hashed to the same bucket.

Need to balance a small probability of false negatives (a high hit
rate) with a small probability of false positives (a small query time.)

5

balancing hit rate and query time

Balancing False Negatives/Positives with MinHash via repetition.

Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature:

MHi,1(x),MHi,2(x), . . . ,MHi,r(x).

Hit Rate: Given by the s-curve: 1− (1− sr)t.
6

locality sensitive hashing

Repetition and s-curve tuning can be used for fast similarity search
with any similarity metric, given a locality sensitive hash function for
that metric.
• LSH schemes exist for many similarity/distance measures:
hamming distance, cosine similarity, etc.

Cosine Similarity: cos(θ(x, y)) = ⟨x,y⟩
∥x∥2·∥y∥2 .

• cos(θ(x, y)) = 1 when θ(x, y) = 0◦ and cos(θ(x, y)) = 0 when
θ(x, y) = 90◦, and cos(θ(x, y)) = −1 when θ(x, y) = 180◦

7

simhash for cosine similarity

SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = sign(⟨x, t⟩) for a random vector t.
What is Pr [SimHash(x) = SimHash(y)]? 8

simhash for cosine similarity

What is Pr [SimHash(x) = SimHash(y)]?

SimHash(x) ̸= SimHash(y) when the plane separates x from y.

• Pr [SimHash(x) ̸= SimHash(y)] = θ(x,y)
π

• Pr [SimHash(x) = SimHash(y)] = 1− θ(x,y)
π ≈ cos(θ(x,y))+1

2 9

hashing for neural networks

Many applications outside traditional similarity search. E.g.,
approximate neural net computation (Anshumali Shrivastava).

• Evaluating N (x) requires |x| · |layer 1|+ |layer 1| · |layer 2|+ . . .

multiplications if fully connected.
• Can be expensive, especially on constrained devices like
cellphones, cameras, etc.

• For approximate evaluation, suffices to identify the neurons in
each layer with high activation when x is presented.

10

hashing for neural networks

• Important neurons have high activation σ(⟨wi, x⟩).
• Since σ is typically monotonic, this means large ⟨wi, x⟩.
• cos(θ(wi, x)) = ⟨wi, x⟩

∥wi∥∥x∥
. Thus these neurons can be found

very quickly using LSH for cosine similarity search.
• Store each weight vector wi (corresponding to each node) in
a set of hash tables and check inputs x for similarity to
these stored vectors.

11

Questions on MinHash and Locality Sensitive Hashing?

12

the frequent items problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x1, . . . , xn (with possible duplicates). Return any item
at appears at least nk times.

• What is the maximum number of items that must be
returned? At most k items with frequency ≥ n

k .
• Trivial with O(n) space – store the count for each item and
return the one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?
• Similar challenge as with the distinct elements problem.

13

the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. I.e., want to maintain a running list of
frequent items that appear in a stream.

14

frequent itemset mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

• Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.

• Frequency of an itemset is known as its support.
• A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g., baskets are
Twitter users and itemsets are subsets of who they follow. 15

majority in data streams

Majority: Consider a stream of n items x1, . . . , xn, where a
single item appears a majority of the time. Return this item.

• Basically k-Frequent items for k = 2 (and assume a single
item has a strict majority.)

16

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

17

boyer-moore algorithm

Boyer-Moore Voting Algorithm:

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Claim: The Boyer-Moore algorithm always outputs the majority
element, regardless of what order the stream is presented in (if it is a
strict majority).

18

correctness of boyer-moore

Boyer-Moore Voting Algorithm:
• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Claim: The Boyer-Moore algorithm always outputs the majority
element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let s = c when m = M and
s = −c otherwise (s is a ‘helper’ variable).

• s is incremented each time M appears. So it is incremented more
than it is decremented (since M appears a majority of times) and
ends at a positive value. =⇒ algorithm ends with m = M.

19

next time

Next Time: Will see a variant on the Boyer-Moore algorithm –
the Misra-Greis summary.

• Stores k top items at once and solves the Frequent Items
problem.

20

