## COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 7

## LOGISTICS

- · Problem Set 1 is due tomorrow at 8pm in Gradescope.
- · No class next Tuesday (it's a Monday at UMass).

#### LOGISTICS

- · Problem Set 1 is due tomorrow at 8pm in Gradescope.
- · No class next Tuesday (it's a Monday at UMass).
- Talk Today: Vatsal Sharan at 4pm in CS 151. Modern Perspectives on Classical Learning Problems: Role of Memory and Data Amplification.

## **SUMMARY**

Last Class:

#### **SUMMARY**

# Last Class: Hashing for Jaccard Similarity

- · MinHash for estimating the Jaccard similarity.
- · Locality sensitive hashing (LSH).
- · Application to fast similarity search.

# Last Class: Hashing for Jaccard Similarity

- · MinHash for estimating the Jaccard similarity.
- · Locality sensitive hashing (LSH).
- · Application to fast similarity search.

## This Class:

- · Finish up MinHash and LSH.
- The Frequent Elements (heavy-hitters) problem.
- · Misra-Gries summaries.

## JACCARD SIMILARITY

Jaccard Similarity: 
$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\text{\# shared elements}}{\text{\# total elements}}$$
.



## Two Common Use Cases:

- Near Neighbor Search: Have a database of n sets/bit strings and given a set A, want to find if it has high similarity to anything in the database. Naively  $\Omega(n)$  time.
- All-pairs Similarity Search: Have n different sets/bit strings. Want to find all pairs with high similarity. Naively  $\Omega(n^2)$  time.

 $MinHash(A) = min_{a \in A} h(a)$  where  $h: U \rightarrow [0,1]$  is a random hash.

 $MinHash(A) = min_{a \in A} h(a)$  where  $h : U \rightarrow [0, 1]$  is a random hash.

**Locality Sensitivity:** Pr[MinHash(A) = MinHash(B)] = J(A, B).

 $MinHash(A) = min_{a \in A} h(a)$  where  $h : U \rightarrow [0,1]$  is a random hash.

**Locality Sensitivity:** Pr[MinHash(A) = MinHash(B)] = J(A, B).

Represents a set with a <u>single number</u> that captures Jaccard similarity information!

 $MinHash(A) = min_{a \in A} h(a)$  where  $h : U \rightarrow [0,1]$  is a random hash.

**Locality Sensitivity:** Pr[MinHash(A) = MinHash(B)] = J(A, B).

Represents a set with a <u>single number</u> that captures Jaccard similarity information!

Given a collision free hash function  $g : [0,1] \rightarrow [m]$ ,

$$Pr[g(MinHash(A)) = g(MinHash(B))] = J(A, B).$$





 $MinHash(A) = min_{a \in A} h(a)$  where  $h : U \rightarrow [0,1]$  is a random hash.

**Locality Sensitivity:** Pr[MinHash(A) = MinHash(B)] = J(A, B).

Represents a set with a <u>single number</u> that captures Jaccard similarity information!

Given a collision free hash function  $g : [0,1] \rightarrow [m]$ ,

$$Pr[g(MinHash(A)) = g(MinHash(B))] = J(A, B).$$



What is Pr[g(MinHash(A)) = g(MinHash(B))] if g is not collision free?

 $MinHash(A) = min_{a \in A} h(a)$  where  $h : U \rightarrow [0,1]$  is a random hash.

**Locality Sensitivity:** Pr[MinHash(A) = MinHash(B)] = J(A, B).

Represents a set with a single number that captures Jaccard similarity information!

Given a collision free hash function  $g : [0,1] \rightarrow [m]$ ,

$$Pr[g(MinHash(A)) = g(MinHash(B))] = J(A, B).$$



Will be a bit larger than J(A, B).

#### LSH FOR SIMILARITY SEARCH

When searching for similar items only search for matches that land in the same hash bucket.



- False Negative: A similar pair doesn't appear in the same bucket.
- · False Positive: A dissimilar pair is hashed to the same bucket.

#### LSH FOR SIMILARITY SEARCH

When searching for similar items only search for matches that land in the same hash bucket.



- False Negative: A similar pair doesn't appear in the same bucket.
- False Positive: A dissimilar pair is hashed to the same bucket.

Need to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)

## BALANCING HIT RATE AND QUERY TIME

Balancing False Negatives/Positives with MinHash via repetition.



Create *t* hash tables. Each is indexed into not with a single MinHash value, but with *r* values, appended together. A length *r* signature:

$$\underline{\mathsf{MH}_{i,1}(x),\mathsf{MH}_{i,2}(x),\ldots,\mathsf{MH}_{i,r}(x)}. \quad \exists \, \left[ \, \mathcal{J}_{i} \quad . \, \right]_{j} \quad \mathcal{A} \, ]$$

Hit Rate: Given by the s-curve:  $1 - (1 - s^r)^t$ .

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.



Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.



Cosine Similarity:  $cos(\theta(x, y))$ 

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.



Cosine Similarity:  $cos(\theta(x, y))$ 

•  $cos(\theta(x,y)) = 1$  when  $\theta(x,y) = 0^\circ$  and  $cos(\theta(x,y)) = 0$  when  $\theta(x,y) = 90^\circ$ , and  $cos(\theta(x,y)) = -1$  when  $\theta(x,y) = 180^\circ$ 

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.



Cosine Similarity:  $\cos(\theta(x,y)) = \frac{\int_{(x,y)} \int_{\|x\|_2 \cdot \|y\|_2}}{\int_{\|x\|_2 \cdot \|y\|_2}}$ 

•  $cos(\theta(x,y)) = 1$  when  $\theta(x,y) = 0^\circ$  and  $cos(\theta(x,y)) = 0$  when  $\theta(x,y) = 90^\circ$ , and  $cos(\theta(x,y)) = -1$  when  $\theta(x,y) = 180^\circ$ 







**SimHash Algorithm:** LSH for cosine similarity.



 $SimHash(x) = sign(\langle x, t \rangle)$  for a random vector t.

**SimHash Algorithm:** LSH for cosine similarity.



What is Pr[SimHash(x) = SimHash(y)]?

What is Pr[SimHash(x) = SimHash(y)]?

What is Pr[SimHash(x) = SimHash(y)]?

 $SimHash(x) \neq SimHash(y)$  when the plane separates x from y.



What is Pr[SimHash(x) = SimHash(y)]?

 $SimHash(x) \neq SimHash(y)$  when the plane separates x from y.



# What is Pr[SimHash(x) = SimHash(y)]?

 $SimHash(x) \neq SimHash(y)$  when the plane separates x from y.



• Pr [SimHash(x)  $\neq$  SimHash(y)] =  $\frac{\theta(x,y)}{\pi}$ 

# What is Pr[SimHash(x) = SimHash(y)]?

 $SimHash(x) \neq SimHash(y)$  when the plane separates x from y.







- Pr  $[SimHash(x) \neq SimHash(y)] = \frac{\theta(x,y)}{x}$
- $Pr[SimHash(x) = SimHash(y)] = 1 \frac{\theta(x,y)}{\pi} \approx \frac{\cos(\theta(x,y))+1}{2}$

## HASHING FOR NEURAL NETWORKS

Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).

## HASHING FOR NEURAL NETWORKS

Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).



Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).



• Evaluating  $\mathcal{N}(x)$  requires  $|x| \cdot |\text{layer 1}| + |\text{layer 1}| \cdot |\text{layer 2}| + \dots$  multiplications if fully connected.

Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).



- Evaluating  $\mathcal{N}(x)$  requires  $|x| \cdot |\text{layer 1}| + |\text{layer 1}| \cdot |\text{layer 2}| + \dots$  multiplications if fully connected.
- Can be expensive, especially on constrained devices like cellphones, cameras, etc.

Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).



- Evaluating  $\mathcal{N}(x)$  requires  $|x| \cdot |\text{layer 1}| + |\text{layer 1}| \cdot |\text{layer 2}| + \dots$  multiplications if fully connected.
- Can be expensive, especially on constrained devices like cellphones, cameras, etc.
- For approximate evaluation, suffices to identify the neurons in each layer with high activation when x is presented.

Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).



- Evaluating  $\mathcal{N}(x)$  requires  $|x| \cdot |\text{layer 1}| + |\text{layer 1}| \cdot |\text{layer 2}| + \dots$  multiplications if fully connected.
- Can be expensive, especially on constrained devices like cellphones, cameras, etc.
- For approximate evaluation, suffices to identify the neurons in each layer with high activation when x is presented.







· Important neurons have high activation  $\sigma(\langle w_i, x \rangle)$ .





- · Important neurons have high activation  $\sigma(\langle w_i, x \rangle)$ .
- · Since  $\sigma$  is typically monotonic, this means large  $\langle w_i, x \rangle$ .





- Important neurons have high activation  $\sigma(\langle w_i, x \rangle)$ .
- · Since  $\sigma$  is typically monotonic, this means large  $\langle w_i, x \rangle$ .
- $\cdot \cos(\theta(w_i, x)) = \frac{\langle w_i, x \rangle}{\|w_i\| \|x\|}$ . Thus these neurons can be found very quickly using LSH for cosine similarity search.



- · Important neurons have high activation  $\sigma(\langle w_i, x \rangle)$ .
- · Since  $\sigma$  is typically monotonic, this means large  $\langle w_i, x \rangle$ .
- $\cos(\theta(w_i, x)) = \frac{\langle w_i, x \rangle}{\|w_i\| \|x\|}$ . Thus these neurons can be found very quickly using LSH for cosine similarity search.
- Store each weight vector  $w_i$  (corresponding to each node) in a set of hash tables and check inputs x for similarity to these stored vectors.

Questions on MinHash and Locality Sensitive Hashing?

| X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>X</b> <sub>8</sub> | <b>X</b> <sub>9</sub> |
|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|
| 5              | 12             | 3              | 3              | 4                     | 5              | 5                     | 10                    | 3                     |

| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | X <sub>7</sub> | <b>x</b> <sub>8</sub> | X <sub>9</sub> |
|----------------|----------------|-----------------------|----------------|-----------------------|----------------|----------------|-----------------------|----------------|
| (5)            | 12             | 3                     | 3              | 4                     | 5              | 5              | 10                    | 3              |

*k*-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items  $x_1, \ldots, x_n$  (with possible duplicates). Return any item at appears at least  $\frac{n}{k}$  times.  $\frac{1}{2}$ 

| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>x</b> <sub>8</sub> | <b>X</b> <sub>9</sub> |
|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 5              | 12             | 3                     | 3              | 4                     | 5                     | 5                     | 10                    | 3                     |

 What is the maximum number of items that must be returned?

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items  $x_1, \ldots, x_n$  (with possible duplicates). Return any item at appears at least  $\frac{n}{k}$  times.

| X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>X</b> <sub>8</sub> | X <sub>9</sub> |
|----------------|----------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|
| 5              | 12             | 3              | 3              | 4                     | 5                     | 5                     | 10                    | 3              |

• What is the maximum number of items that must be returned? At most k items with frequency  $\geq \frac{n}{k}$ .

| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>x</b> <sub>8</sub> | X <sub>9</sub> |
|----------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------------------|----------------|
| 5              | 12             | 3                     | 3              | 4                     | 5              | 5                     | 10                    | 3              |

- What is the maximum number of items that must be returned? At most k items with frequency  $\geq \frac{n}{k}$ .
- Trivial with O(n) space store the count for each item and return the one that appears  $\geq n/k$  times.

| X <sub>1</sub> | X <sub>2</sub> | Х <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>x</b> <sub>8</sub> | X <sub>9</sub> |
|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|----------------|
| 5              | 12             | 3              | 3              | 4                     | 5              | 5                     | 10                    | 3              |

- What is the maximum number of items that must be returned? At most k items with frequency  $\geq \frac{n}{k}$ .
- Trivial with O(n) space store the count for each item and return the one that appears  $\geq n/k$  times.
- · Can we do it with less space? I.e., without storing all *n* items?

| X <sub>1</sub> | X <sub>2</sub> | Х <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>x</b> <sub>8</sub> | X <sub>9</sub> |
|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|----------------|
| 5              | 12             | 3              | 3              | 4                     | 5              | 5                     | 10                    | 3              |

- What is the maximum number of items that must be returned? At most k items with frequency  $\geq \frac{n}{k}$ .
- Trivial with O(n) space store the count for each item and return the one that appears  $\geq n/k$  times.
- · Can we do it with less space? I.e., without storing all *n* items?
- · Similar challenge as with the distinct elements problem.

Applications of Frequent Items:

# Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)

# Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).

# **Applications of Frequent Items:**

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- · 'Iceberg queries' for all items in a database with frequency above some threshold.

# **Applications of Frequent Items:**

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- · 'Iceberg queries' for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. I.e., want to maintain a running list of frequent items that appear in a stream.





**Association rule learning:** A very common task in data mining is to identify common associations between different events.



• Identified via frequent itemset counting. Find all sets of /k items that appear many times in the same basket.



- Identified via frequent itemset counting. Find all sets of *k* items that appear many times in the same basket.
- Frequency of an itemset is known as its support.



- Identified via frequent itemset counting. Find all sets of *k* items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.

# MAJORITY IN DATA STREAMS

**Majority:** Consider a stream of n items  $x_1, \ldots, x_n$ , where a single item appears a majority of the time. Return this item.

# MAJORITY IN DATA STREAMS

**Majority:** Consider a stream of n items  $x_1, \ldots, x_n$ , where a single item appears a majority of the time. Return this item.

| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>X</b> <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> |
|----------------|----------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|----------------|-----------------|
| 5              | 12             | 3                     | 5                     | 4                     | 5              | 5                     | 10                    | 5              | 5               |
| 4              | 4              | Y                     | Y                     |                       |                | 5                     | 6                     | 5              | 5               |

# MAJORITY IN DATA STREAMS

**Majority:** Consider a stream of n items  $x_1, \ldots, x_n$ , where a single item appears a majority of the time. Return this item.

| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>x</b> <sub>8</sub> | <b>X</b> <sub>9</sub> | X <sub>10</sub> |
|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------|
| 5              | 12             | 3                     | 5              | 4                     | 5                     | 5                     | 10                    | 5                     | 5               |

• Basically k-Frequent items for k=2 (and assume a single item has a strict majority.)

# **BOYER-MOORE ALGORITHM**

**Boyer-Moore Voting Algorithm:** (our first deterministic algorithm)

· Initialize count c := 0, majority element  $m := \perp$ 

### **BOYER-MOORE ALGORITHM**

# **Boyer-Moore Voting Algorithm:** (our first deterministic algorithm)

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

### **BOYER-MOORE ALGORITHM**

# **Boyer-Moore Voting Algorithm:** (our first deterministic algorithm)

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

Just requires  $O(\log n)$  bits to store c and space to store m.

# **Boyer-Moore Voting Algorithm:** (our first deterministic algorithm)

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

Just requires  $O(\log n)$  bits to store c and space to store m.

| c=0, m=⊥ |                |                |                |                |                |                |                |                |                |                 |
|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
|          |                |                |                |                |                |                |                |                |                |                 |
|          | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> | X <sub>6</sub> | X <sub>7</sub> | X <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> |
|          | 5              | 12             | 3              | 5              | 4              | 5              | 5              | 10             | 5              | 5               |

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.



- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n

$$f c = 0, \text{ set } m := x_i \text{ and } c := 1.$$
Else if  $m = x_i$ , set  $c := c + 1$ .

• Else if  $m \neq x_i$ , set c := c - 1.



#### **BOYER-MOORE ALGORITHM**

## Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

**Claim:** The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in (if it is a strict majority).

## Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element  $m := \bot$
- For  $i = 1, \ldots, n$ 
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

**Claim:** The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.



# Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

**Claim:** The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

**Proof:** Let M be the true majority element. Let s=c when m=M and s=-c otherwise

## Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

**Claim:** The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

## Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element  $m := \bot$
- For  $i = 1, \ldots, n$ 
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

**Claim:** The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.



# Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

**Claim:** The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.



# Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

**Claim:** The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.



# Boyer-Moore Voting Algorithm:

- Initialize count c := 0, majority element  $m := \bot$
- For i = 1, ..., n
  - If c = 0, set  $m := x_i$  and c := 1.
  - Else if  $m = x_i$ , set c := c + 1.
  - Else if  $m \neq x_i$ , set c := c 1.

**Claim:** The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

**Proof:** Let M be the true majority element. Let s=c when m=M and s=-c otherwise (s is a 'helper' variable).

• s is incremented each time M appears. So it is incremented more than it is decremented (since M appears a majority of times) and ends at a positive value.  $\implies$  algorithm ends with m = M.

### **NEXT TIME**

**Next Time:** Will see a variant on the Boyer-Moore algorithm – the Misra-Greis summary.

• Stores *k* top items at once and solves the Frequent Items problem.