
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 6

0

logistics

• Problem Set 1 is due Friday at 8pm in Gradescope.
• Thanks for your feedback in Piazza on lecture pace.
• 6% a bit too slow.
• 22% just right.
• 63% a bit too fast.
• 8% way too fast.

1

summary

Last Class:
• Distinct Elements via Hashing:
• Distinct elements algorithm using min-of-hashes approach.
• Analysis using averaging and the ‘median trick’.
• Practical implementations (HyperLogLog) and applications.

• Jaccard Similarity:
• Jaccard similarity as a similarity metric between sets and binary
strings. Applications in document comparison and audio
fingerprinting.

This Class:

• See how a min-of-hashes approach (MinHash) is used to
estimate the Jaccard similarity.

• Application of MinHash to fast similarity search.
• Locality sensitive hashing. 2

another fundamental problem

Jaccard Index: A similarity measure between two sets.

J(A,B) = |A ∩ B|
|A ∪ B| =

shared elements
total elements .

Natural measure for similarity between bit strings – interpret
an n bit string as a set, containing the elements corresponding
the positions of its ones. J(x, y) = # shared ones

total ones .
3

search with jaccard similarity

J(A,B) = |A ∩ B|
|A ∪ B| =

shared elements
total elements .

Want Fast Implementations For:

• Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high Jaccard similarity
to anything in the database. Ω(n) time with a linear scan.

• All-pairs Similarity Search: Have n different sets/bit strings
and want to find all pairs with high Jaccard similarity. Ω(n2)
time if we check all pairs explicitly.

Will speed up via randomized locality sensitive hashing.

Why can’t we just use e.g. binary search or regular hash tables
to speed up these search problems?

4

applications

Document Similarity:

• E.g., to detect plagiarism, copyright infringement, duplicate
webpages, spam.

• Use Shingling + Jaccard similarity. (n-grams, k-mers)

Audio Fingerprinting:
• E.g., in audio search (Shazam), Earthquake detection.
• Represent sound clip via a binary ‘fingerprint’ then compare with
Jaccard similarity.

5

application: collaborative filtering

Online recommendation systems are often based on collaborative
filtering. Simplest approach: find similar users and make
recommendations based on those users.

• Twitter: represent a user as the set of accounts they follow. Match
similar users based on the Jaccard similarity of these sets.
Recommend that you follow accounts followed by similar users.

• Netflix: look at sets of movies watched. Amazon: look at products
purchased, etc. 6

application: entity resolution

Entity Resolution Problem: Want to combine records from multiple
data sources that refer to the same entities.

• E.g. data on individuals from voting registrations, property records,
and social media accounts. Names and addresses may not exactly
match, due to typos, nicknames, moves, etc.

• Still want to match records that all refer to the same person using
all pairs similarity search.

See Section 3.8.2 of Mining Massive Datasets for a discussion of a
real world example involving 1 million customers. Naively this would
be

(1000000
2

)
≈ 500 billion pairs of customers to check!

7

application: spam and fraud detection

Many applications to spam/fraud detection. E.g.

• Fake Reviews: Very common on websites like Amazon.
Detection often looks for (near) duplicate reviews on similar
products, which have been copied. ‘Near duplicate’
measured with shingles + Jaccard similarity.

• Lateral phishing: Phishing emails sent to addresses at a
business coming from a legitimate email address at the
same business that has been compromised.
• One method of detection looks at the recipient list of an email
and checks if it has small Jaccard similarity with any previous
recipient lists. If not, the email is flagged as possible spam.

8

why jaccard similarity?

Why use Jaccard similarity over other metrics like: Hamming
distinct (bit strings), correlation (sound waves, seismograms),
edit distance (text, genome sequences, etc.)?

Two Reasons:

• Depending on the application, often is a very good measure.
• Even when not ideal, very efficient to compute and (as we
will see today) implement near neighbor search and
all-pairs similarity search with.

9

minhashing

Goal: Speed up Jaccard similarity search (near neighbor and all-pairs
similarity search).

Strategy: Use random hashing to map each set to a very compressed
representation. Jaccard similarity can be estimated from these
representations.

MinHash(A): A random hash function, built on top of a random hash
function! [Andrei Broder, 1997 at Altavista]

• Let h : U→ [0, 1] be a random
hash function

• s := 1

• For x1, . . . , x|A| ∈ A

• s := min(s,h(xk))

• Return s Identical to our distinct elements sketch! 10

minhash

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

• Since we are hashing into the continuous range [0, 1], we will
never have h(x) = h(y) for x ̸= y (i.e., no spurious collisions)

• MinHash(A) = MinHash(B) only if an item in A ∩ B has the
minimum hash value in both sets.

11

minhash

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

Claim: MinHash(A) = MinHash(B) only if an item in A ∩ B has
the minimum hash value in both sets.

Pr(MinHash(A) = MinHash(B)) = ?
|A ∩ B|

total # items hashed

=
|A ∩ B|
|A ∪ B| = J(A,B).

12

locality sensitive hashing

Upshot: MinHash reduces estimating the Jaccard similarity to
checking equality of a single number.

Pr(MinHash(A) = MinHash(B)) = J(A,B).

• An instance of locality sensitive hashing (LSH).
• A hash function where the collision probability is higher when two
inputs are more similar (can design different functions for
different similarity metrics.)

13

lsh for similarity search

How does locality sensitive hashing (LSH) help with similarity
search?

• Near Neighbor Search: Given item x, compute h(x). Only
search for similar items in the h(x) bucket of the hash table.

• All-pairs Similarity Search: Scan through all buckets of the
hash table and look for similar pairs within each bucket.

• We will use h(x) = g(MinHash(x)) where g : [0, 1] → [n] is a
random hash function. Why? 14

lsh with minhash

Goal: Given a document y, identify all documents x in a
database with Jaccard similarity (of their shingle sets)
J(x, y) ≥ 1/2.

Our Approach:

• Create a hash table of size m, choose a random hash
function g : [0, 1] → [m], and insert every item x into bucket
g(MinHash(x)). Search for items similar to y in bucket
g(MinHash(y)).

• What is Pr [g(MinHash(x)) = g(MinHash(y))] assuming
J(x, y) = 1/2 and g is collision free?

• For every document x in your database with J(x, y) ≥ 1/2
what is the probability you will find x in bucket
g(MinHash(y))?

15

reducing false negatives

With a simple use of MinHash, we miss a match x with J(x, y) = 1/2
with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash
values MH1(x), . . . ,MHt(x). Apply random hash function g to map all
these values to locations in t hash tables.

• To search for items similar to y, look at all items in bucket
g(MH1(y)) of the 1st table, bucket g(MH2(y)) of the 2nd table, etc.

• What is the probability that x with J(x, y) = 1/2 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1− (probability in no buckets) = 1−

(1
2
)t ≈ .99 for t = 7.

• What is the probability that x with J(x, y) = 1/4 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1− (probability in no buckets) = 1−

(3
4
)t ≈ .87 for t = 7.

Potential for a lot of false positives! Slows down search time. 16

balancing hit rate and query time

We want to balance a small probability of false negatives (a high hit
rate) with a small probability of false positives (a small query time.)

Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature. 17

balancing hit rate and query time

Consider searching for matches in t hash tables, using MinHash
signatures of length r. For x and y with Jaccard similarity J(x, y) = s:

• Probability that a single hash matches.
Pr

[
MHi,j(x) = MHi,j(y)

]
= J(x, y) = s.

• Probability that x and y having matching signatures in repetition i.
Pr

[
MHi,1(x), . . . ,MHi,r(x) = MHi,1(y), . . . ,MHi,r(y)

]
= sr.

• Probability that x and y don’t match in repetition i: 1− sr.

• Probability that x and y don’t match in all repetitions: (1− sr)t.

• Probability that x and y match in at least one repetition:

Hit Probability: 1− (1− sr)t.

18

the s-curve

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x, y) = s match in at
least one repetition is: 1− (1− sr)t.

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 5, t = 10

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 10, t = 10

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 5, t = 30

r and t are tuned depending on application. ‘Threshold’ when hit
probability is 1/2 is ≈ (1/t)1/r. E.g., ≈ (1/30)1/5 = .51 in this case.

19

s-curve example

For example: Consider a database with 10, 000, 000 audio clips. You
are given a clip x and want to find any y in the database with
J(x, y) ≥ .9.

• There are 10 true matches in the database with J(x, y) ≥ .9.
• There are 10, 000 near matches with J(x, y) ∈ [.7, .9].

With signature length r = 25 and repetitions t = 50, hit probability
for J(x, y) = s is 1− (1− s25)50.

• Hit probability for J(x, y) ≥ .9 is ≥ 1− (1− .920)40 ≈ .98
• Hit probability for J(x, y) ∈ [.7, .9] is ≤ 1− (1− .920)40 ≈ .98
• Hit probability for J(x, y) ≤ .7 is ≤ 1− (1− .720)40 ≈ .007

Expected Number of Items Scanned: (proportional to query time)

≤ 10+ .98 ∗ 10, 000+ .007 ∗ 9, 989, 990 ≈ 80, 000≪ 10, 000, 000.
20

hashing for duplicate detection

All different variants of detecting duplicates/finding matches
in large datasets. This is an important problem in many
contexts!

21

locality sensitive hashing

Locality sensitive hashing (LSH) schemes have been developed
for many similarity/distance measures: hamming distance (bit
sampling), cosine similarity (random projections), etc.

• Typically used for fast near neighbor search and all-pairs
similarity search.

• Anshumali Shrivastava at Rice has proposed a huge number
of other interesting applications – from speeding up neural
net evaluation, to sampling points with large gradients in
stochastic gradient descent.

22

speeding up neural networks

• Evaluating the output for input x requires
|x| · |layer 1|+ |layer 1| · |layer 2|+ . . . multiplications if fully
connected. Can be expensive, especially on constrained devices
like cellphones, cameras, etc.

• For approximate evaluation, suffices to identify the neurons in
each layer with the highest activation when x is presented.

• That is, nj where
∑6

i=1 xi · w(xi,nj) = ⟨x,w(nj)⟩ is large. Can be
identified rapidly using LSH dot product (i.e., cosine similarity)! 23

Questions?

24

