COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.

Lecture 24 (Final Lecture!)

LOGISTICS

- Problem Set 4 is due Sunday 5/3 at 8pm.
- Exam is at **2pm on May 6th**. Open note, similar to midterm.
- Exam review guide and practice problems have been posted under the schedule tab on the course page.
- I will hold usual office hours today and exam review office hours this Thursday and next Tuesday during the regular class time 11:30am-12:45pm
- Regular SRTI's are suspended this semester. But I am holding an optional SRTI for this class and would really appreciate your feedback.
- http://owl.umass.edu/partners/ courseEvalSurvey/uma/.

SUMMARY

Last Class:

- · Analysis of gradient descent for optimizing convex functions.
- (The same) analysis of projected gradient descent for optimizing under (convex) constraints. $Q \in \mathbb{R}^2$
- · Convex sets and projection functions.

SUMMARY

Last Class:

- · Analysis of gradient descent for optimizing convex functions.
- (The same) analysis of projected gradient descent for optimizing under (convex) constraints.
- · Convex sets and projection functions.

This Class:

- · Online learning, regret, and online gradient descent.
- · Application to analysis of stochastic gradient descent (if time).
- · Course summary/wrap-up

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^{n} \ell(\vec{\theta}, \vec{x}_i)$, when data points are presented in an online fashion $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ (like in streaming algorithms)

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time. $\nabla L(\Theta, \times) = \sum_{i=1}^{n} \nabla L(\Theta, \times_i)$

Want to minimize some global loss $\underline{L}(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^{n} \ell(\vec{\theta}, \vec{x}_i)$, when data points are presented in an online fashion $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ (like in streaming algorithms)

Stochastic gradient descent is a special case: when data points are considered a random order for computational reasons.

ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a different objective function at each step: $F: \mathcal{Q}(\mathcal{O}, \times i)$

$$f_1,\ldots,f_t:\mathbb{R}^d\to\mathbb{R}$$

ONLINE OPTIMIZATION FORMAL SETUP

$$M = \mathcal{L}(0, X_i) = f_i(0)$$

Online Optimization: In place of a single function f, we see a different objective function at each step:

$$\underbrace{f_1, \underbrace{\delta}_{\cdot \cdot \cdot}, f_t : \mathbb{R}^d \to \mathbb{R}}_{f_1, \underbrace{\delta}_{\cdot \cdot \cdot}, f_t} : \mathbb{R}^d \to \mathbb{R}$$

$$\underbrace{f_1, \underbrace{\delta}_{\cdot \cdot \cdot}, f_t : \mathbb{R}^d \to \mathbb{R}}_{f_1, \underbrace{\delta}_{\cdot \cdot \cdot}, f_t} : \mathbb{R}^d \to \mathbb{R}$$

- · At each step, first pick (play) a parameter vector $\vec{\theta}^{(i)}$.
- Then are told f_i and incur cost $f_i(\vec{\theta}^{(i)})$.
- Goal: Minimize total cost $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$.

No assumptions on how f_1, \ldots, f_t are related to each other!

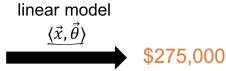
ONLINE OPTIMIZATION EXAMPLE

UI design via online optimization.

- Parameter vector $\vec{\theta}^{(i)}$: some encoding of the layout at step *i*.
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = 1$ if user does not click 'add to cart' and $f_i(\vec{\theta}^{(i)}) = 0$ if they do click.
- Want to maximize number of purchases. I.e., minimize $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$

ONLINE OPTIMIZATION EXAMPLE

Home pricing tools.



$$\vec{x} = [\#baths, \#beds, \#floors...]$$

- · Parameter vector $\vec{\theta}^{(i)}$: coefficients of linear model at step *i*.
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta^{(i)}}) = (\langle \vec{x_i}, \vec{\theta^{(i)}} \rangle price_i)^2$ revealed when $home_i$ is listed or sold.
- Want to minimize total squared error $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$ (same as classic least squares regression).

REGRET

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon. \le (\bigcirc^{\cancel{*}}) + \varepsilon$$

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\underbrace{\sum_{i=1}^{t} f_{i}(\vec{\theta}^{(i)})}_{i} \leq \min_{\vec{\theta}} \sum_{i=1}^{t} f_{i}(\vec{\theta}) + \epsilon = \underbrace{\sum_{i=1}^{t} f_{i}(\vec{\theta}^{off})}_{i} + \epsilon$$

 ϵ is called the regret.

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{off}) + \underline{\epsilon}$$

$$\epsilon \text{ is called the regret.}$$

· This error metric is a bit 'unfair'. Why?

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{off}) + \epsilon$$

 ϵ is called the regret.

- This error metric is a bit 'unfair'. Why?
- Comparing online solution to best fixed solution in hindsight. ϵ can be negative!

INTUITION CHECK

$$\bigcap_{i} \bigcap_{j} \bigcap_{i} \bigcap_{j} \bigcap_{j} \bigcap_{j} \bigcap_{j} \bigcap_{i} \bigcap_{j} \bigcap_{$$

What if for $i = 1, ..., t, f_i(\theta) = |\mathbf{v} - 1000|$ or $f_i(\theta) = |\mathbf{v} + 1000|$ ir an alternating pattern?

How small can the regret
$$\epsilon$$
 be? $\left(\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})\right) \leq \left(\sum_{i=1}^{t} f_i(\vec{\theta}^{off})\right) + \epsilon$.

$$0' = 1000 \quad 0^2 = 1000 \quad 0^3 = 1000 \dots$$

 E can be negative

INTUITION CHECK

Choose 0' before seeing fi 0' calaitel ising past fi(0,1) fi(0,1).... fi(0in)

What if for i = 1, ..., t, $f_i(\theta) = |x - 1000|$ or $f_i(\theta) = |x + 1000|$ in an alternating pattern?

How small can the regret ϵ be? $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \sum_{i=1}^t f_i(\vec{\theta}^{off}) + \epsilon$.

What if for i = 1, ..., t, $f_i(\theta) = |x - 1000|$ or $f_i(\theta) = |x + 1000|$ in no particular pattern? How can any online learning algorithm hope to achieve small regret?

- f_1, \ldots, f_t are all convex.
- Each f_i is G-Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\|\vec{\theta}^{(1)} \vec{\theta}^{off}\|_2 \le R$ where $\theta^{(1)}$ is the first vector chosen.

Assume that:

- f_1, \ldots, f_t are all convex.
- Each f_i is G-Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\|\vec{\theta}^{(1)} \vec{\theta}^{off}\|_2 \le R$ where $\theta^{(1)}$ is the first vector chosen.

Online Gradient Descent

- · Set step size $\eta = \frac{R}{G\sqrt{t}}$. Pick son initial Θ'
- For $i = 1, \ldots, t$
 - Play $\vec{\theta}^{(i)}$ and incur cost $f_i(\vec{\theta}^{(i)})$.
 - $\underline{\cdot \vec{\theta}^{(i+1)}} = \vec{\theta}^{(i)} \eta \cdot \underline{\nabla} f_i(\vec{\theta}^{(i)})$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{i=1}^{t} f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:



Average regret goes to 0 and $t \to \infty$.

10

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{i=1}^{t} f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Average regret goes to 0 and $t \to \infty$. No assumptions on f_1, \ldots, f_t !

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{i=1}^{t} f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Average regret goes to 0 and $t \to \infty$. No assumptions on f_1, \ldots, f_t !

Step 1.1: For all
$$i$$
, $\nabla f_i(\theta^{(i)})(\theta^{(i)} - \theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Average regret goes to 0 and $t \to \infty$. No assumptions on f_1, \ldots, f_t !

Step 1.1: For all
$$i$$
, $\nabla f_i(\theta^{(i)})(\theta^{(i)} - \theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Convexity \implies Step 1: For all i,

$$\underline{f_i(\theta^{(i)})} - \underline{f_i(\theta^{off})} \leq \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}.$$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{i=1}^{t} f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Step 1: For all
$$i, f_i(\theta^{(i)}) - f_i(\theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{j=1}^{t} f_i(\theta^{off})\right] \leq RG\sqrt{t}$$

Stochastic gradient descent is an efficient offline optimization method, seeking $\hat{\theta}$ with

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon = f(\vec{\theta}^*) + \epsilon.$$

Stochastic gradient descent is an efficient offline optimization method, seeking $\hat{\theta}$ with

$$f(\hat{\theta}) \le \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon = f(\vec{\theta}^*) + \epsilon.$$

- The most popular optimization method in modern machine learning.
- Easily analyzed as a special case of online gradient descent!

Assume that:

• f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(\vec{\theta}, \vec{X}_j)$.

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, X) = \sum_{i=1}^{n} \ell(\vec{\theta}, \vec{x}_i)$.
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(\vec{\theta}, \vec{x}_j)$.
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)
 - What does this imply about how Lipschitz f is?

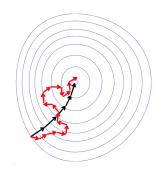
- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^{n} \ell(\vec{\theta}, \vec{x}_i)$.
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)
 - What does this imply about how Lipschitz f is?
- Initialize with $\theta^{(1)}$ satisfying $\|\vec{\theta}^{(1)} \vec{\theta}^*\|_2 \le R$.

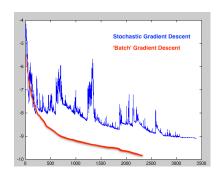
Assume that:

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(\vec{\theta}, \vec{x}_j)$.
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)
 - What does this imply about how Lipschitz f is?
- Initialize with $\theta^{(1)}$ satisfying $\|\vec{\theta}^{(1)} \vec{\theta}^*\|_2 \le R$.

Stochastic Gradient Descent

- Set step size $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t
 - Pick random $j_i \in 1, ..., n$.
 - $\cdot \vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \cdot \vec{\nabla} f_{i}(\vec{\theta}^{(i)})$
- · Return $\hat{\theta} = \frac{1}{t} \sum_{i=1}^{t} \vec{\theta}^{(i)}$.





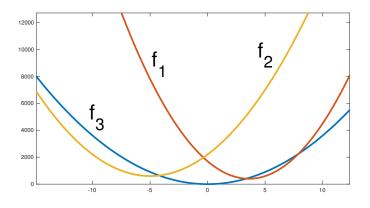
$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} f_{i}(\vec{\theta}^{(i)})$$
 vs. $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} f(\vec{\theta}^{(i)})$

Note that: $\mathbb{E}[\vec{\nabla}f_{j_i}(\vec{\theta}^{(i)})] = \frac{1}{n}\vec{\nabla}f(\vec{\theta}^{(i)}).$

Analysis extends to any algorithm that takes the gradient step in expectation (batch GD, randomly quantized, measurement noise, differentially private, etc.)

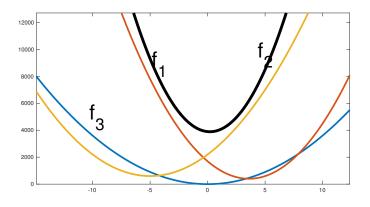
TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?



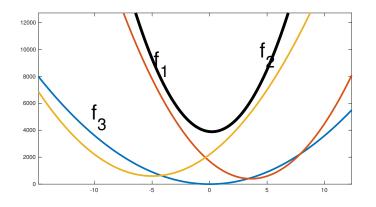
TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?



TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?



A sum of convex functions is always convex (good exercise).

Step 1:
$$f(\hat{\theta}) - f(\theta^*) \le \frac{1}{t} \sum_{i=1}^{t} [f(\theta^{(i)}) - f(\theta^*)]$$

Step 1:
$$f(\hat{\theta}) - f(\theta^*) \le \frac{1}{t} \sum_{i=1}^{t} [f(\theta^{(i)}) - f(\theta^*)]$$

Step 2:
$$\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \le \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)]\right]$$
.

Step 1:
$$f(\hat{\theta}) - f(\theta^*) \le \frac{1}{t} \sum_{i=1}^{t} [f(\theta^{(i)}) - f(\theta^*)]$$

Step 2:
$$\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^{t} [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)]\right]$$
.

Step 3:
$$\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^{t} [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^{off})]\right]$$
.

Step 1:
$$f(\hat{\theta}) - f(\theta^*) \leq \frac{1}{t} \sum_{i=1}^{t} [f(\theta^{(i)}) - f(\theta^*)]$$

Step 2: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^{t} [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)]\right]$.
Step 3: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^{t} [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^{off})]\right]$.
Step 4: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \underbrace{R \cdot \frac{G}{n} \cdot \sqrt{t}}_{OGD bound} = \frac{RG}{\sqrt{t}}$.

Stochastic gradient descent generally makes more iterations than gradient descent.

Each iteration is much cheaper (by a factor of n).

$$\vec{\nabla} \sum_{j=1}^{n} f_j(\vec{\theta})$$
 vs. $\vec{\nabla} f_j(\vec{\theta})$

When
$$f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$$
 and $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$:

Theorem – SGD: After $t \ge \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$\mathbb{E}[f(\hat{\theta})] \le f(\theta^*) + \epsilon.$$

When $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq \bar{G}$:

Theorem – GD: After $t \ge \frac{R^2 \tilde{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq f(\theta^*) + \epsilon.$$

When
$$f(\vec{\theta}) = \sum_{j=1}^n f_j(\vec{\theta})$$
 and $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \le \frac{G}{n}$:

Theorem – SGD: After $t \ge \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$\mathbb{E}[f(\hat{\theta})] \le f(\theta^*) + \epsilon.$$

When $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq \bar{G}$:

Theorem – GD: After $t \ge \frac{R^2 \tilde{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta^*) + \epsilon.$$

$$\|\vec{\nabla} f(\vec{\theta})\|_2 = \|\vec{\nabla} f_1(\vec{\theta}) + \ldots + \vec{\nabla} f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla} f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$$

When
$$f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$$
 and $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$:

Theorem – SGD: After $t \ge \frac{R^2 G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$\mathbb{E}[f(\hat{\theta})] \le f(\theta^*) + \epsilon.$$

When $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq \bar{G}$:

Theorem – GD: After $t \ge \frac{R^2 \tilde{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta^*) + \epsilon.$$

$$\|\vec{\nabla} f(\vec{\theta})\|_2 = \|\vec{\nabla} f_1(\vec{\theta}) + \ldots + \vec{\nabla} f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla} f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$$

When would this bound be tight?

RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

 Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).

RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms.

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale – set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms.
- In the process covered probability/statistics tools that are very useful beyond algorithm design: concentration inequalities, higher moment bounds, law of large numbers, central limit theorem, linearity of expectation and variance, union bound, median as a robust estimator.

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory nonlinear dimension reduction and spectral clustering for community detection.

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O(\log n/\epsilon^2)$ dimensions while preserving pairwise distances.
- · Connections to the weird geometry of high-dimensional space.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory nonlinear dimension reduction and spectral clustering for community detection.
- In the process covered linear algebraic tools that are very broadly useful in ML and data science: eigendecomposition, singular value decomposition, projection, norm transformations.

Foundations of continuous optimization and gradient descent.

Motivation for continuous optimization as loss minimization in ML.
 Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.

- Motivation for continuous optimization as loss minimization in ML.
 Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).

- Motivation for continuous optimization as loss minimization in ML.
 Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set..
- · Online optimization and online gradient descent.

- Motivation for continuous optimization as loss minimization in ML.
 Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set..
- · Online optimization and online gradient descent.
- Lots that we didn't cover: stochastic gradient descent, accelerated methods, adaptive methods, second order methods (quasi-Newton methods), practical considerations. Gave mathematical tools to understand these methods.

Thanks for a great semester!