COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.
Lecture 24 (Final Lecture!)



LOGISTICS

- Problem Set 4 is due Sunday 5/3 at 8pm.

- Exam is at 2pm on May 6th. Open note, similar to midterm.

- Exam review guide and practice problems have been posted
under the schedule tab on the course page.

- I will hold usual office hours today and exam review office
hours this Thursday and next Tuesday during the regular
class time 11:30am-12:45pm

- Regular SRTI's are suspended this semester. But | am
holding an optional SRTI for this class and would really
appreciate your feedback.

- http://owl.umass.edu/partners/
courseEvalSurvey/uma/.
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SUMMARY

Last Class:

+ Analysis of gradient descent for optimizing convex functions.

- (The same) analysis of projected gradient descent for optimizing
under (convex) constraints.

- Convex sets and projection functions.

This Class:

- Online learning, regret, and online gradient descent.

- Application to analysis of stochastic gradient descent (if time).

- Course summary/wrap-up



ONLINE GRADIENT DESCENT

In reality many learning problems are online.
- Websites optimize ads or recommendations to show users, given
continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn from
mistakes over time.
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ONLINE GRADIENT DESCENT

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given
continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems learn from

mistakes over time. VL(Q XB Z 72O, k.)

Want to minimize some global loss LSHAZ X) = Z, _q £(6, (9 X,) When data
points are presented in an online fashion X;, X, ..., X, (like in
streaming algorithms) X, .o X Km\

Stochastic gradient descent is a special case: when data points are
considered a random order for computational reasons.

Cenrrpivaon. |



ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a
different objective function at each step: .
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ONLINE OPTIMIZATION FORMAL SETUP

oL . o) (e

S
Online Optimization: In place of a single function f, we see a
different objective function at each step: 8, ~y p@)

. md
g fiR SR8
qo) = 2,x) 2owx)

- At each step, first pick (play) a parameter vector 6.
- Then are told f; and incur cost f;(61)).
- Goal: Minimize total cost S, f;(6)).

—

No assumptions on how fy,...,f; are related to each other!



ONLINE OPTIMIZATION EXAMPLE

Ul design via online optimization.

i AddtoCart [

Add to Cart

- Parameter vector #): some encoding of the layout at step |.

- Functions fi,....f: £i(6") = 1if user does not click ‘add to
cart’ and f;(61)) = 0 if they do click.

- Want to maximize number of purchases. l.e.,, minimize

i fi(60) i



ONLINE OPTIMIZATION EXAMPLE

Home pricing tools.

linear model
(x,0)

) $275,000

X = [#baths, #beds, #floors ...]

- Parameter vector 8): coefficients of linear model at step i.
- Functions fi,....fe fi(60) = ((x;,00) — price;)? revealed

when home; is listed or sold.
- Want to minimize total squared error >_1_. f;(8)) (same as

classic least squares regression).
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In normal optimization, we seek 8 satisfying:

In online optimization we will ask for the same.
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REGRET

In normal optimization, we seek 8 satisfying:
f(B) < minf(6) + .

In online optimization we will ask for the same.

t t
Zf, (00 < 1Zf,-( Z fi(0°7) + ¢
= 7 =
e is called the regret.

- This error metric is a bit ‘unfair. Why?

- Comparing online solution to best fixed solution in
hindsight. € can be negative!
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INTUITION CHECK

@l\ CC\)OJ\{/L L\DQ/‘& P—»GXT -ﬁ(gﬁ '(7\.(@(13' (:,(‘(9\‘)

What if for i =1,...,t, fi(#) = |x — 1000] or f;j(#) = |x +1000] in
an alternating pattern?

How small can the regret e be? S°'_, f;(60)) < M) +e

What if for i =1,...,t, fi(6) = |x —1000] or f;(6) = |x + 1000| in
no particular pattern? How can any online learning algorithm
hope to achieve small regret?

O



ONLINE GRADIENT DESCENT

Assume that:

- f1,...,frare all convex.
- Each f; is G-Lipschitz (i.e, |Vfi(8)|, < G for all 4.)
- |6 — 67|, < R where 6(') is the first vector chosen.




ONLINE GRADIENT DESCENT

Assume that:

- f1,...,frare all convex.
- Each f; is G-Lipschitz (i.e, |Vfi(8)|, < G for all 4.)
- |6 — 67|, < R where 6(') is the first vector chosen.

Online Gradient Descent

o\ |
- Set step sizen:Gi\/f. P -l ©
- Fori=1,...,t

- Play 8) and incur cost f;(§1).
- 9D = gU) — g TF(61)




ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:
€
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o e m P

10



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
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Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:

t

[iﬁ(fﬂ")) - Zﬁ-(ef’ff)] < RGVE

i=1

Average regret goes to 0 and t — co. No assumptionson f, ..., fi!
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:

t

[iﬁ(fﬂ")) - Zﬁ-(ef’ff)] < RGVE

i=1

Average regret goes to 0 and t — co. No assumptionson f, ..., fi!

Step 1.: For all i, Vfi(0?)(60) — goffy < 1000100} | "

2n
S —
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz f, ..., f:, OGD initialized with starting point () within
radius R of #97, using step size np = G\/, has regret bounded by:

-] v

i=1

Average regret goes to 0 and t — co. No assumptionson f, ..., fi!

Step 1.1: For all i, V£ (90)(6¢) — o) < 107=0T_ 000077 | n',

2n
Convexity = Step 1: For all |,
. o) — goif||2 pli+1) — goff||2 G2
ﬁ(o(r ) ]r(eoff) H ” ” HZ + ne-
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of #97, using step size np = %, has regret bounded by:

[iﬁ(fﬂ")) - iﬁ-(ef’ff)] < RGVE

i=1

. ; () _goff |12 — 11 9U+1) _goff
Step 1: For all, fi() — f(9°) < 1°=*"L: Lt e I 4 n¢’



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-

Lipschitz f, ..., f:, OGD initialized with starting point () within

radius R of #%7, using step size np = G\/, has regret bounded by:
- ———

i=1

S ] e

Step 1: For all i, f;(00) — fi(6°7) < H0(’)_GWH%EEGM_QWH% +% =
: : ‘ L1100 — goff 2 — 190+ — goff|2 t. G2
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STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent is an efficient offline optimization
method, seeking § with

— —

f(9) < minf(6) + e = f6) + .



STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent is an efficient offline optimization
method, seeking § with

— —

f(9) < minf(6) + e = f6") + .

- The most popular optimization method in modern machine
learning.

- Easily analyzed as a special case of online gradient descent!
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STOCHASTIC GRADIENT DESCENT

Assume that:

+ fis convex and decomposable as f(f) = 3L, f;(6).
© Eg, L(0,X) = YL, 40, %).

- Each f; is S-Lipschitz (i.e, | Vfi(8)|l» < & for all 4.)
- What does this imply about how Lipschitz f is?

- Initialize with 6 satisfying |80 — 6*||, < R.

Stochastic Gradient Descent

- Set step size n = %ﬁ-
- Fori=1,...,t
- Pickrandom j; €1,..., n.

—
I

- U = gl — . ﬁfj (6
) 1 t i
* Return 0 = 1577 00,



STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent

‘Batch' Gradient Descent

G+ = g0 — . f (BD) vs. AU+ = §0) — . (D)
Note that: E[V; (00))] = 1Vf(61)).
Analysis extends to any algorithm that takes the gradient step

in expectation (batch GD, randomly quantized, measurement

noise, differentially private, etc.) %



TEST OF INTUITION

What does f1(8) + f2(0) + f3(6) look like?
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TEST OF INTUITION

What does f1(0) + f>(0) + f3(6) look like?

12000

10000 -

8000

6000 -

4000

2000

A sum of convex functions is always convex (good exercise).



STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> R;Gz iterations, n = Giﬂ, and starting point within radius R
of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.
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Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> R;Gz iterations, n = Giﬂ, and starting point within radius R
of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.

Step 1: f(8) — f(6*) < 1 i [f(69) — f(67)]
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> R;Gz iterations, n = Giﬂ, and starting point within radius R
of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.

Step 1: f(8) — f(6*) < 1 i [f(69) — f(67)]
Step 2: E[f(6) — f(6*)] < ¢ - E |31 [f;,(69) — £;,(6")]] -
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> EC | = Giﬂ, and starting point within radius R
of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.

Step 1: f(0) — f(6") < £ i [f(00) - f(67)]
step 2: E[f(9) — f(6°)] < 2 - E [ [7,(69) — fi (6)]]
Step 3: E[f(6) — f(0°)] < ¢ - E [S1_4[5,(0) — £,(0°7)]]
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> EC | = Giﬂ, and starting point within radius R
of 6*, outputs § satisfying: E[f(A)] < f(6*) + e.

Step 1: f(8) — f(6") < } I [A6%) — (6°)]

step 2: E[f(9) — f(6°)] < 2 - E [ [7,(69) — fi (6)]]
Step 3: E[f(A) - f(6")] < ¢ - B[S (0) — £, (0]
Step 4: E[f(0) —f(0*)] < 2R~ V=2

Vi
——
0OGD bound

~+|>

~I>
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SGD VS. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

vZf, vs. Vfi(0)

17



SGD VS. GD

when f(8) = Y51, i(8) and |[V(@)]. < §:

Theorem - SGD: After t >

iterations outputs 8 satisfying:

€

E[f(6)] < f(6") + .
When |[VA(9)] < G:
Theorem - GD: After t > — iterations outputs 4 satisfying:
f(B) <f(6") +e.

18



SGD VS. GD

When f(6) = 327, £(6) and [ Vi(9)]2 < §:

Theorem - SGD: After ¢ > r»:rb:;‘ .

E[f(B)] < f(6%) + ¢
When |[VA(9)] < G:
Theorem - GD: After t > — iterations outputs 4 satisfying:
f(8) < f(67) + €

IVAO 2 = IVAO) + ...+ V@) < S V@) <n- £ <G
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SGD VS. GD

When f(6) = 327, £(6) and [ Vi(9)]2 < §:

Theorem - SGD: After t >

E[f(6)] < f(67) + e

When V@), < &

Theorem - GD: After t > “

f(6) < f(67) + €

IVFO2 = IVA©O) + ... + Val®)]2 < 1L V(@) <n- ¢ <G
When would this bound be tight?

18



RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.
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RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

-+ Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).
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RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

-+ Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

19
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20



DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/¢?)
dimensions while preserving pairwise distances.

20



DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/¢?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

20



DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/¢?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

20



DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/¢?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

+ Low-rank approximation of similarity matrices and entity
embeddings (e.g,, LSA, word2vec, DeepWalk).

20



DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/¢?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

+ Low-rank approximation of similarity matrices and entity
embeddings (e.g,, LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.
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DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/¢?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

+ Low-rank approximation of similarity matrices and entity
embeddings (e.g,, LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value

decomposition, projection, norm transformations.
20
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Foundations of continuous optimization and gradient descent.
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CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

* Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set..

+ Online optimization and online gradient descent.

- Lots that we didn’t cover: stochastic gradient descent, accelerated
methods, adaptive methods, second order methods
(quasi-Newton methods), practical considerations. Gave
mathematical tools to understand these methods.
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Thanks for a great semester!
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