COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.

Lecture 20

LOGISTICS

- Problem Set 4 on Spectral Methods/Optimization due Wednesday 4/29. Can submit until Sunday 5/3 at 8pm.
- Shorter than the first 3. I may assign some additional extra credit, depending on what we cover in the next few classes.

SUMMARY

Last Class:

- Finish up power method Krylov methods and connection to random walks.
- $\boldsymbol{\cdot}$ Start on continuous optimization.

Last Class:

- Finish up power method Krylov methods and connection to random walks.
- · Start on continuous optimization.

This Class:

- · Gradient descent.
- · Motivation as a greedy method
- · Start on analysis for convex functions.

CONTINUOUS OPTIMIZATION

Given some function $f: \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$f(\vec{\theta}_{\star}) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}).$$

- Typically up to some small approximation factor: i.e., find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$
- · Often under some constraints:
 - $\|\vec{\theta}\|_2 \le 1, \|\vec{\theta}\|_1 \le 1.$
 - $\cdot \ \overrightarrow{A}\overrightarrow{\theta} \leq \overrightarrow{b}, \ \overrightarrow{\theta}^{T} \overrightarrow{A}\overrightarrow{\theta} \geq 0.$
 - $\vec{1}^T \vec{\theta} = \sum_{i=1}^d \vec{\theta}(i) \le c.$

Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector, $\vec{e}_i = \underbrace{[0,0,1,0,0,\ldots,0]}_{1 \text{ at position } i}$.

Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector,

$$\vec{e}_i = [0, 0, 1, 0, 0, \dots, 0].$$
1 at position *i*

Partial Derivative:

$$\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.$$

Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector, $\vec{e}_i = [0, 0, 1, 0, 0, \dots, 0].$ 1 at position i

Partial Derivative:

$$\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.$$

Directional Derivative:

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}.$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla} f(\vec{\theta}) = \begin{bmatrix} \frac{\partial J}{\partial \vec{\theta}(1)} \\ \frac{\partial J}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial J}{\partial \vec{\theta}(d)} \end{bmatrix}$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

Directional Derivative in Terms of the Gradient.

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon(\vec{e}_1 \cdot \vec{v}(1) + \vec{e}_2 \cdot \vec{v}(2) + \dots + \vec{e}_d \cdot \vec{v}(d)) - f(\vec{\theta})}{\epsilon}$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon(\vec{e}_1 \cdot \vec{v}(1) + \vec{e}_2 \cdot \vec{v}(2) + \ldots + \vec{e}_d \cdot \vec{v}(d)) - f(\vec{\theta})}{\epsilon}$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon(\vec{e}_1 \cdot \vec{v}(1) + \vec{e}_2 \cdot \vec{v}(2) + \dots + \vec{e}_d \cdot \vec{v}(d)) - f(\vec{\theta})}{\epsilon}$$

$$\approx \vec{v}(1) \cdot \frac{\partial f}{\partial \vec{\theta}(1)}$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon(\vec{e}_1 \cdot \vec{v}(1) + \vec{e}_2 \cdot \vec{v}(2) + \dots + \vec{e}_d \cdot \vec{v}(d)) - f(\vec{\theta})}{\epsilon}$$

$$\approx \vec{v}(1) \cdot \frac{\partial f}{\partial \vec{\theta}(1)} + \vec{v}(2) \cdot \frac{\partial f}{\partial \vec{\theta}(2)} + \dots + \vec{v}(d) \cdot \frac{\partial f}{\partial \vec{\theta}(d)}$$

Gradient: Just a list of the partial derivatives
$$\vec{\nabla} f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

$$\underbrace{D_{\vec{v}} f(\vec{\theta})}_{\epsilon \to 0} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon(\vec{e}_1 \cdot \vec{v}(1) + \vec{e}_2 \cdot \vec{v}(2) + \dots + \vec{e}_d \cdot \vec{v}(d)) - f(\vec{\theta})}{\epsilon}$$

$$\underbrace{\vec{v}(1) \cdot \frac{\partial f}{\partial \vec{\theta}(1)}}_{\epsilon} + \vec{v}(2) \cdot \frac{\partial f}{\partial \vec{\theta}(2)} + \dots + \vec{v}(d) \cdot \frac{\partial f}{\partial \vec{\theta}(d)}$$

$$= \underbrace{(\vec{v}, \vec{\nabla} f(\vec{\theta}))}_{\epsilon}$$

$$\underbrace{\vec{v}(1) \cdot \vec{v}(1)}_{\epsilon \to 0} + \underbrace{\vec{v}(2) \cdot \frac{\partial f}{\partial \vec{\theta}(2)}}_{\epsilon \to 0} + \dots + \underbrace{\vec{v}(d) \cdot \frac{\partial f}{\partial \vec{\theta}(d)}}_{\epsilon \to 0}$$

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\nabla f(\vec{\theta})$ for any $\vec{\theta}$.

In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points $\vec{x}_1, \dots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels y_1, \dots, y_n (the entries of $\vec{y} \in \mathbb{R}^n$), find $\vec{\theta}_*$ minimizing:

$$L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right)^{2}$$

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points $\vec{x}_1, \dots \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels y_1, \dots, y_n (the entries of $\vec{y} \in \mathbb{R}^n$), find $\vec{\theta}_*$ minimizing:

$$L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta}) = \sum_{i=1}^{n} \left(\underbrace{\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i}}_{2} \right)^{2} = \|\mathbf{X}\vec{\theta} - \vec{\mathbf{y}}\|_{2}^{2}.$$

$$\underline{\frac{\partial L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta})}{\partial \vec{\theta}(j)}} = \sum_{i=1}^{n} \underline{2 \cdot \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - y_{i}\right)} \cdot \underbrace{\frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - y_{i}\right)}{\partial \vec{\theta}(j)}$$

Given input points $\vec{x}_1, \dots \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels y_1, \dots, y_n (the entries of $\vec{y} \in \mathbb{R}^n$), find $\vec{\theta}_*$ minimizing:

$$L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} (\vec{\theta}^{T}\vec{x}_{i} - y_{i})^{2} = ||X\vec{\theta} - \vec{y}||_{2}^{2}.$$

$$\frac{\partial L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i}\right) \cdot \frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i}\right)}{\partial \vec{\theta}(j)}$$

$$\frac{\partial \left(\overrightarrow{\theta^{\mathsf{T}}} \overrightarrow{x_i} - y_i\right)}{\partial \overrightarrow{\theta}(j)} = \frac{\partial (\widehat{\theta^{\mathsf{T}}} \overrightarrow{x_i})}{\partial \overrightarrow{\theta}(j)}$$

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points $\vec{x}_1, \dots \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels y_1, \ldots, y_n (the entries of $\vec{y} \in \mathbb{R}^n$), find $\vec{\theta}_*$ minimizing:

$$L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta}) = \sum_{i=1}^{n} \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i} \right)^{2} = \|\mathbf{X} \vec{\theta} - \vec{\mathbf{y}}\|_{2}^{2}.$$

$$\frac{\partial L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i} \right) \cdot \frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i} \right)}{\partial \vec{\theta}(j)}$$

$$\frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{x}_{i} - y_{i}\right)}{\partial \vec{\theta}(j)} = \frac{\partial (\theta^{\mathsf{T}} \vec{x}_{i})}{\partial \vec{\theta}(j)} = \lim_{\epsilon \to 0} \frac{(\theta + \epsilon \vec{e}_{j})^{\mathsf{T}} \vec{x}_{i} - \theta^{\mathsf{T}} \vec{x}_{i}}{\epsilon} = \underbrace{\underbrace{\nabla \times_{i} + \xi e_{j}}^{\mathsf{T}} \times_{i} - \theta^{\mathsf{T}} \vec{x}_{i}}_{\mathsf{T}}}_{\mathsf{T}}$$

Given input points $\vec{x}_1, \dots \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels y_1, \dots, y_n (the entries of $\vec{y} \in \mathbb{R}^n$), find $\vec{\theta}_*$ minimizing:

$$L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} (\vec{\theta}^T \vec{x}_i - y_i)^2 = ||X\vec{\theta} - \vec{y}||_2^2.$$

$$\frac{\partial L_{\mathbf{X},\vec{y}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{\mathsf{T}} \vec{x}_{i} - y_{i} \right) \cdot \frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{x}_{i} - y_{i} \right)}{\partial \vec{\theta}(j)}$$

$$\frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{x}_i - y_i\right)}{\partial \vec{\theta}(j)} = \frac{\partial (\theta^{\mathsf{T}} \vec{x}_i)}{\partial \vec{\theta}(j)} = \lim_{\epsilon \to 0} \frac{(\theta + \epsilon \vec{e}_j)^{\mathsf{T}} \vec{x}_i - \theta^{\mathsf{T}} \vec{x}_i}{\epsilon} = \lim_{\epsilon \to 0} \frac{\epsilon \vec{e}_j^{\mathsf{T}} \vec{x}_i}{\epsilon}$$

Given input points $\vec{x}_1, \dots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels y_1, \dots, y_n (the entries of $\vec{y} \in \mathbb{R}^n$), find $\vec{\theta}_*$ minimizing:

$$L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} (\vec{\theta}^{T}\vec{x}_{i} - y_{i})^{2} = ||X\vec{\theta} - \vec{y}||_{2}^{2}.$$

$$\frac{\partial L_{\mathbf{X},\vec{y}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \cdot \frac{\partial \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right)}{\partial \vec{\theta}(j)}$$

$$\frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{x}_{i} - y_{i}\right)}{\partial \vec{\theta}(j)} = \frac{\partial (\theta^{\mathsf{T}} \vec{x}_{i})}{\partial \vec{\theta}(j)} = \lim_{\epsilon \to 0} \frac{(\theta + \epsilon \vec{e}_{j})^{\mathsf{T}} \vec{x}_{i} - \theta^{\mathsf{T}} \vec{x}_{i}}{\epsilon} = \lim_{\epsilon \to 0} \frac{\epsilon \vec{e}_{j}^{\mathsf{T}} \vec{x}_{i}}{\epsilon} = \underline{\vec{x}_{i}(j)}.$$

Given input points $\vec{x}_1, \dots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels y_1, \dots, y_n (the entries of $\vec{y} \in \mathbb{R}^n$), find $\vec{\theta}_*$ minimizing:

$$L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} (\vec{\theta}^{T}\vec{x}_{i} - y_{i})^{2} = ||X\vec{\theta} - \vec{y}||_{2}^{2}.$$

$$\frac{\partial L_{X,\vec{y}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \cdot \frac{\partial \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right)}{\partial \vec{\theta}(j)}$$

$$= \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \vec{x}_{\underline{i}}(\underline{j})$$

$$\frac{\partial \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right)}{\partial \vec{\theta}(j)} = \lim_{\epsilon \to 0} \frac{(\theta + \epsilon \vec{e}_{j})^{T} \vec{x}_{i} - \theta^{T} \vec{x}_{i}}{\epsilon} = \lim_{\epsilon \to 0} \frac{\epsilon \vec{e}_{j}^{T} \vec{x}_{i}}{\epsilon} = \vec{x}_{i}(\underline{j}).$$

Partial derivative for least squares regression:

$$\begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot (\vec{\theta}^{T}\vec{x}_{i} - y_{i}) \vec{x}_{i}(j).$$

$$\overrightarrow{\partial} \left((\vec{\theta}) = \frac{\partial L(\vec{\theta})}{\partial \theta(1)} \right] = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(1)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)} \\
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial \theta(2)}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial L_{x,\vec{y}}(\vec{\theta})}{\partial$$

GRADIENT EXAMPLE

Partial derivative for least squares regression:

$$\frac{\partial L_{\mathbf{X},\vec{y}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \underbrace{\vec{x}_{i}(j)}_{}.$$

$$\vec{\nabla} L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \vec{x}_{i}$$

Partial derivative for least squares regression:

$$\frac{\partial L_{X,\vec{y}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \vec{x}_{i}(j).$$

$$\vec{\nabla} L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \vec{x}_{i} = \begin{bmatrix} x_{i} & x_{i} \\ x_{i} & x_{i} \end{bmatrix} \vec{x}_{i}$$

$$= 2 \vec{X}^{T} (\vec{X} \vec{\theta} - \vec{y}).$$

$$\vec{\nabla} L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \vec{x}_{i} = \begin{bmatrix} x_{i} & x_{i} \\ x_{i} & x_{i} \end{bmatrix} \vec{x}_{i}$$

$$= 2 \vec{X}^{T} (\vec{X} \vec{\theta} - \vec{y}).$$

$$\vec{\nabla} L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \vec{x}_{i} = \begin{bmatrix} x_{i} & x_{i} \\ x_{i} & x_{i} \end{bmatrix} \vec{x}_{i}$$

$$= 2 \vec{X}^{T} (\vec{X} \vec{\theta} - \vec{y}).$$

GRADIENT EXAMPLE

Gradient for least squares regression via linear algebraic approach:

$$\nabla L_{x,y}(\vec{\theta}) = \nabla ||x\vec{\theta} - \vec{y}||_{2}^{2}$$

$$\sum_{i=1}^{2} (o^{T}x_{i} - y_{i})^{2}$$

$$\sum_{i=1}^{2} (x_{i} - y_{i})^{2} + y^{T}y^{T}$$

11/11=1

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta_1}$, in each iteration let $\vec{\theta_{i+1}} = \vec{\theta_i} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta_i} + \eta \vec{v})$.

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}_1$, in each iteration let $\vec{\theta}_{i+1} = \vec{\theta}_i + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}_i + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}.$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}_1$, in each iteration let $\vec{\theta}_{i+1} = \vec{\theta}_i + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}_i + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta_i}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta_i} + \epsilon \vec{v}) - f(\vec{\theta_i})}{\epsilon}.$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}_1$, in each iteration let $\vec{\theta}_{i+1} = \vec{\theta}_i + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}_i + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta_i}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta_i} + \epsilon \vec{v}) - f(\vec{\theta_i})}{\epsilon}.$$

So for small η :

$$f(\vec{\theta}_{i+1}) - f(\vec{\theta}_i) = f(\vec{\theta}_i + \eta \vec{v}) - f(\vec{\theta}_i)$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}_1$, in each iteration let $\vec{\theta}_{i+1} = \vec{\theta}_i + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}_i + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta_i}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta_i} + \epsilon \vec{v}) - f(\vec{\theta_i})}{\epsilon}.$$

So for small η :

$$f(\vec{\theta}_{i+1}) - f(\vec{\theta}_{i}) = f(\vec{\theta}_{i} + \underline{\eta \vec{v}}) - f(\vec{\theta}_{i}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}_{i})$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}_1$, in each iteration let $\vec{\theta}_{i+1} = \vec{\theta}_i + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}_i + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta_i}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta_i} + \epsilon \vec{v}) - f(\vec{\theta_i})}{\epsilon}.$$

So for small η :

$$\underbrace{f(\vec{\theta}_{i+1}) - f(\vec{\theta}_i)}_{f(\vec{\theta}_i)} = f(\vec{\theta}_i + \eta \vec{v}) - f(\vec{\theta}_i) \underbrace{\approx \eta \cdot D_{\vec{v}} f(\vec{\theta}_i)}_{Q} = \underbrace{\eta \cdot \langle \vec{v}, \vec{\nabla} f(\vec{\theta}_i) \rangle}_{Q}.$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}_1$, in each iteration let $\vec{\theta}_{i+1} = \vec{\theta}_i + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}_i + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta_i}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta_i} + \epsilon \vec{v}) - f(\vec{\theta_i})}{\epsilon}.$$

$$f(\theta_{i+1}) \approx (\theta_i)^{\dagger} m \langle v_i \nabla f(\theta_i) \rangle$$

So for small η :

$$\underbrace{\frac{f(\vec{\theta}_{i+1}) - f(\vec{\theta}_{i})}{f'(\Theta_{i+1})}} = f(\vec{\theta}_{i} + \eta \vec{\mathbf{v}}) - f(\vec{\theta}_{i}) \underbrace{\approx \eta \cdot D_{\vec{\mathbf{v}}} f(\vec{\theta}_{i})}_{= \eta \cdot \langle \vec{\mathbf{v}}, \vec{\nabla} f(\vec{\theta}_{i}) \rangle}.$$

We want to choose \vec{v} minimizing $\langle \vec{v}, \vec{\nabla} f(\vec{\theta_i}) \rangle$ – i.e., pointing in the direction of $\vec{\nabla} f(\vec{\theta_i})$ but with the opposite sign.

Gradient Descent

· Choose some initialization $\vec{\theta}_1$.

• For
$$i = 1, ..., t - 1$$

• $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$ $\qquad \qquad f(\hat{\Theta}) \leq f(\hat{\Theta}^*) + \xi$

• Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$, as an approximate minimizer.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

 \cdot For now assume η stays the same in each iteration.

Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \underline{\eta \nabla f(\vec{\theta}_i)}$

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will converge to a approximate minimizer $\hat{\theta}$ with:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon$$

Examples: least squares regression, logistic regression, sparse regression (lasso), regularized regression, SVMS,...

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will converge to a approximate minimizer $\hat{\theta}$ with:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

Examples: least squares regression, logistic regression, sparse regression (lasso), regularized regression, SVMS,...

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will converge to a approximate minimizer $\hat{\theta}$ with:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

Examples: least squares regression, logistic regression, sparse regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent will converge to a approximate stationary point $\hat{\theta}$ with:

$$\|\nabla f(\hat{\theta})\|_2 \leq \epsilon.$$

Examples: neural networks, clustering, mixture models.

STATIONARY POINT VS. LOCAL MINIMUM

Why for non-convex functions do we only guarantee convergence to a approximate stationary point rather than an approximate local minimum?

STATIONARY POINT VS. LOCAL MINIMUM

Why for non-convex functions do we only guarantee convergence to a approximate stationary point rather than an approximate local minimum?

WELL-BEHAVED FUNCTIONS

Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$

WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is well-behaved in some way.

WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is well-behaved in some way.

· Lipschitz (size of gradient is bounded): There is some G s.t.:

$$\forall \vec{\theta}: \quad ||\vec{\nabla} f(\vec{\theta})||_{2} \leq G \Leftrightarrow \forall \vec{\theta}_{1}, \vec{\theta}_{2}: \quad |f(\vec{\theta}_{1}) - f(\vec{\theta}_{2})| \leq G \cdot ||\vec{\theta}_{1} - \vec{\theta}_{2}||_{2}$$

$$f(O) = |O| \qquad |G| \qquad |G|$$

· Smooth/Lipschitz gradient (direction/size of gradient is not changing too quickly): There is some β s.t.:

$$\mathcal{O}_{l} = \mathcal{E} \quad \mathcal{O}_{1} = \mathcal{E} \quad \frac{\forall \vec{\theta}_{1}, \vec{\theta}_{2}}{|| | | - || ||} = \mathcal{L} \quad \frac{||\vec{\nabla}f(\vec{\theta}_{1}) - \vec{\nabla}f(\vec{\theta}_{2})||_{2} \leq \beta \cdot ||\vec{\theta}_{1} - \vec{\theta}_{2}||_{2}}{|| || || - || || ||} = \mathcal{L}$$

Gradient Descent analysis for convex functions.

CONVEXITY

Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\underline{\vec{\theta_1}}, \underline{\vec{\theta_2}} \in \mathbb{R}^d$ and $\lambda \in [0,1]$:

$$(1-\lambda)\cdot f(\vec{\theta_1}) + \lambda\cdot f(\vec{\theta_2}) \ge f\left((1-\lambda)\cdot \vec{\theta_1} + \lambda\cdot \vec{\theta_2}\right)$$

CONVEXITY

Corollary – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \ge \vec{\nabla} f(\vec{\theta}_1)^{\mathsf{T}} (\vec{\theta}_2 - \vec{\theta}_1)$$

GD ANALYSIS - CONVEX FUNCTIONS

Assume that:

- \cdot f is convex.
- f is G Lipschitz $(\|\vec{\nabla}f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$).
- $\|\vec{\theta}_1 \vec{\theta}_*\|_2 \le R$ where $\vec{\theta}_1$ is the initialization point.

Gradient Descent

- · Choose some initialization $\vec{\theta_1}$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t 1
 - $\cdot \vec{\theta}_{i+1} = \vec{\theta}_i \eta \nabla f(\vec{\theta}_i)$
- Return $\hat{\theta} = \arg\min_{\vec{\theta}_1,...\vec{\theta}_t} f(\vec{\theta}_i)$.

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon.$$

Step 1: For all
$$i, f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
. Visually:

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Formally:

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.1:
$$\nabla f(\theta_i)^{\mathsf{T}}(\theta_i - \theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i, f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
.

Step 1.1:
$$\nabla f(\theta_i)^{\mathsf{T}}(\theta_i - \theta_*) \leq \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies \text{Step 1.}$$

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \Longrightarrow$
Step 2: $\frac{1}{t} \sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \le \frac{R^2}{2n \cdot t} + \frac{\eta G^2}{2}$.

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

Questions on Gradient Descent?

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\theta^* = \underset{\theta \in \mathcal{S}}{\arg\min} f(\theta),$$

where S is a convex set.

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\theta^* = \arg\min_{\theta \in \mathcal{S}} f(\theta),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0, 1]$:

$$(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\theta^* = \arg\min_{\theta \in \mathcal{S}} f(\theta),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0, 1]$:

$$(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

E.g.
$$S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}.$$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

•
$$P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_2.$$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_{2}.$
- For $S = \{ \vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1 \}$ what is $P_S(\vec{y})$?

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_2.$
- For $S = \{ \vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1 \}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_{2}.$
- For $S = \{ \vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1 \}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

Projected Gradient Descent

- · Choose some initialization $\vec{ heta_1}$ and set $\eta = \frac{R}{G\sqrt{t}} \cdot$
- For i = 1, ..., t 1
 - $\cdot \vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i \eta \cdot \nabla f(\vec{\theta}_i)$
 - $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)}).$
- Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$.

Visually:

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient descent!

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient descent!

Theorem – Projection to a convex set: For any convex set $S \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in S$,

$$||P_{\mathcal{S}}(\vec{y}) - \vec{\theta}||_2 \le ||\vec{y} - \vec{\theta}||_2.$$

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set S, Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1}^{(out)} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set S, Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1}^{(out)} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set S, Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1}^{(out)} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i, f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
.

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies$$
 Theorem.