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LOGISTICS

- Problem Set 4 on Spectral Methods/Optimization due
Wednesday 4/29. Can submit until Sunday 5/3 at 8pm.

- Shorter than the first 3. | may assign some additional extra
credit, depending on what we cover in the next few classes.



SUMMARY

Last Class:

- Finish up power method - Krylov methods and connection
to random walks.

- Start on continuous optimization.



SUMMARY

Last Class:

- Finish up power method - Krylov methods and connection
to random walks.

- Start on continuous optimization.
This Class:

- Gradient descent.
- Motivation as a greedy method

- Start on analysis for convex functions.



CONTINUOUS OPTIMIZATION

Given some function f: RY — R, find 6, with:

f(6.) = min f(9).
HcRd

_—

- Typically up to some small approximation factor: i.e,, find 4 Gﬂze
with f(8) = ming_ge f(0) + ¢
- Often under some constraints:
6l <, Jl6ll <.
- AG< b, 07A0> 0.
- 1Te =329 6(i) < c.
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Let &; € RY denote the it" standard basis vector,
& =[0,0,1,0,0,...,0].
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MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of

B%SJ)

—

V(o) = |

of

a0(d)

Directional Derivative in Terms of the Gradient:

Dy 76) = tim fl6+ (& - (1) + & (ORI} € V(d)) — f(6)
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MULTIVARIATE CALCULUS REVIEW
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FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(6) for any 6.

Gradient Evaluation: Can compute V£(6) for any 6.



FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(6) for any 6.
Gradient Evaluation: Can compute V£(§) for any 6.
\

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

- Gradient evaluation is called a backward pass (compute the
gradient via chain rule, using backpropagation).



GRADIENT EXAMPLE

Running Example: Least sqcuar§s regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:

@) = Y (7% )
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Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:
n
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Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
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GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:

n

L@ = (0% — 1) = X0 7

i=1

By Chain rule:

aLX iz (@i,—yf)-()w{ )

20(j)

ZL,M

(6 + Egj)T)?[ — QT)_(','




GRADIENT EXAMPLE

Partial derivative for least squares regression:

L; —_n o* 1) %0)-
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GRADIENT EXAMPLE

Partial derivative for least squares regression:
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GRADIENT EXAMPLE

Partial derivative for least squares regression:

oL 5 4
xy Zz (9 X — ) i()- XT(XQ—j>
Vixs(0) = ZZ (éTX/ _Yf))?i = Z—/ % x, oTx,J
4 = ;T X0 — §))
gep - \
nxd X, Sy,



GRADIENT EXAMPLE

1
Gradient for least squares regression via linear algebraic approach:

v
72X
Vixy(0) = VX6 - 73

iéﬁﬁl

7 [txo-g] (o] Tgke-26x, ¢ WQ
I

axxe e 5

= aHO- 2yt 2l (X8 )

9




GRADIENT DESCENT GREEDY APPROACH

P(91> ”\/H:/

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6, in each iteration let 6., = 6; + oV, where 7 is a (small)
‘step size’ and V is a direction chosen to minimize f(6; + nv).

10
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GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6, in each iteration let 6., = 6; + oV, where 7 is a (small)
‘step size’ and V is a direction chosen to minimize f(6; + nv).

0 () — tim 1L ) = 16)
v ! _e—>0 € ’

So for small »:

— —

f(0:1) = 10) = fl6i + nv) — f(0)
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GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6, in each iteration let 6., = 6; + oV, where 7 is a (small)
‘step size’ and V is a direction chosen to minimize f(6; + nv).

Dy f(6)) = lim w 9?
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e—0 €
v

So for small »:

—
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GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6, in each iteration let 6., = 6; + oV, where 7 is a (small)
‘step size’ and V is a direction chosen to minimize f(6; + nv). /l /)

0y 1) = tigg 1 V) Q) L
So for small 7: %4
f(011) = f(0) = F(0; + nV) — f(0) 2.0 - Def(6)) Y \L v
—_— e
=1V, Vf(6))).
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GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6, in each iteration let 6., = 6; + oV, where 7 is a (small)
‘step size’ and V is a direction chosen to minimize f(6; + nv).

lim (6; + V) — f(6;

f(@ ) €0 € m@ > P‘qel_>1 [)’L,<\/ VF/O
1+

So for small »:

N

£(67)
VAG)).

o\ f0i) —f18) = f(6 + V) = f(8) = - D

j\/:\l/ ") F(@ "4'>

<i

=n-(V,

We want to choose v minimizing (v, Vf(4;)) - i.e., pointing in the
direction of Vf(#;) but with the opposite sign.

10



GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 6;.
“Fori=1,...,t—1 A\ < Q*)in
“ O1 =0, —Vf(0) F(@ p(

- Return 4 = arg minéff(é}), as an approximate minimizer.

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.



G

i®  _9eR 7f(O)ER

Qq\gu 4
oK o
) ol m\:
9 N
5 S .
¥ e
0*
o " Non- wnx
e 2_,
C@n\/m&

Gradient Descent Update: §;; = 0;



CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer 6 with:

f(0) < f(6.) + €

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...
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f0) < f0.) + € = minf(6) + .

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...



CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer 6 with:

f0) < f0.) + € = minf(6) + .

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point 8 with:

IVA@)ll2 < e.

Examples: neural networks, clustering, mixture models.



STATIONARY POINT VS. LOCAL MINIMUM

Why for non-convex functions do we only guarantee
convergence to a approximate stationary point rather than an
approximate local minimum?

14



STATIONARY POINT VS.

LOCAL MINIMUM

Why for non-convex functions do we only guarantee
convergence to a approximate stationary point rather than an
approximate local minimum?

f(6)

14



WELL-BEHAVED FUNCTIONS

PeER VfO)ER

%>$‘_)

f(6)

0*

Gradient Descent Update: 97+1 =0 z/Tf((Z)



WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is
(_\ .
well-behaved in some way.

16



WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is
well-behaved in some way.

- Lipschitz (size of gradient is bounded): There is somg‘_Gts.t:

V0 |\VAO), <G V0,0 [f(6) —f(62) < G- |6 — 632

—_—

UL YA,
f | & &> H@I["@L” s M)

O & g0 R e
- Smooth/Lipschitz gradient (direction/size of gradient is not
changing too quickly): There is some 3 st

V0,0, 0 | V(6h) — VAB)|, < un
Ot Gie ol -a le el %€




Gradient Descent analysis for convex functions.

17



CONVEXITY

Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 67,6, € R? and A € [0,1]:

—_—

C-21) ¢ 500 27(0- -6+ 2-5)

18



CONVEXITY

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € RY and X € [0,1]: .
_ Vi 6))y

([: 1(8:) - (8) > 950 (5 - 7)) d

F'(@st

i A - 8 \
, 8. P(G‘B'(Qz‘el)é ‘[\(‘9L>%)

C)

Py L)

*
9 19



GD ANALYSIS — CONVEX FUNCTIONS

Assume that:

- fis convex.
- fis G Lipschitz (| V(6)|, < G for all §).
- |67 — 6., < R where 6, is the initialization point.

Gradient Descent

- Choose some initialization #; and set n =
- Fori=1,...,t—1
* O =0, — nVI(0)

- Return § = argming 5 f(0).

G\‘;U
B

20



GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex)G
Lipschitz function f, GD run with t > g iterations, n = %,
and starting point within radius R of 6,, outputs @ satisfying:

1> e s =
o &l

21



GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

f(0) < f(6.) + e.

Step 1: For all i, f(8;) — f(0,) < W=0elizlOwi=0-l | nG" yjig o]y

n
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GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

f(0) < f(6.) + e.

Step 1: For all i, f(6;) — f(6.) < ”9’70*“572“6’“*6*”% + "TGZ Formally:

n
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(8.) +e.

2 2
Step 1: For all i, f(6;) — f(6,) < 10i=0 15— 116i1—0 115 + WTGZ

2n

— 2_ _ 2 2
Step 1.1: Vf(6))"(6; — 6.) < 10i—0+15 21]\9,“ Ol %
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(8.) +e.

2 2
Step 1: For all i, f(6;) — f(6,) < 10i=0 15— 116i1—0 115 + WTGZ

2n

Step 11: Vf(6,)7(6; — 6.) < 120 licl0wmtell 4 nG . spep 1,

23



GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
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2 2
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2n
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GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

f(0) < f(6.) + e.

2 2
Step 2: 101, f(6) — f(6.) < £ + 15
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Questions on Gradient Descent?

26



CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

0* = argminf(6),
0es

where S is a convex set.
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

0* = argminf(6),
0es

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 61,6, € S and X € [0, 1]:

(1-Nf+A-6, €S
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

0* = argminf(6),
0es

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 61,6, € S and X € [0, 1]:

(1-Nf+A-6, €S

Eg S={0ecR?:|6], <1}
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

© Ps(y) = argming.g ||5— Vi
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* ForS ={f R ||6], <1} what is Ps(¥)?
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- For S being a k dimensional subspace of RY, what is Ps(V)?
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

* Ps(y) =argming_g 16 — V2.
* ForS ={f R ||6], <1} what is Ps(¥)?

- For S being a k dimensional subspace of RY, what is Ps(V)?

Projected Gradient Descent

- Choose some initialization #; and set n = Giﬁ.

cFori=1,...,t—1
- 0 =0 — - VA
© Giyq = Ps(8Y).

* Return 6 = argmin; f(6,).

28



PROJECTED GRADIENT DESCENT

Visually:

29



CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!

30



CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RYJeRI andfe S,

IPs(¥) — 0], < |7 — 6]l

30



PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G jterations, n=

€2

R
R GVt
and starting point within radius R of 6,, outputs 6 satisfying:

f9) <f(6.) +e= minf(0) +
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G jterations, n=

€2

R
R GVt
and starting point within radius R of 6,, outputs 6 satisfying:

f9) <f(6.) +e= minf(0) +

Recall: 9% = 6, — - Vf(¢;) and 6,5 = Ps(61%").
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G jterations, n=

€2

R
R GVt
and starting point within radius R of 6,, outputs 6 satisfying:

f9) <f(6.) +e= minf(0) +

Recall: 9% = 6, — - Vf(¢;) and 6,5 = Ps(61%").

< 6= 151162 —0. I

Step 1: For all i, f(6;) — f(6.) + 18

— 2n
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G jterations, n=

€2

R
R GVt
and starting point within radius R of 6,, outputs 6 satisfying:

f9) <f(6.) +e= minf(0) +

Recall: 614" = 6, — - Vf(6) and 6,11 = Ps(6\%4").

10,—0.15—105"—0. 12 | 62

Step 1: For all i, f(6;) — f(6.)

— 2n

Step 1.a: For all i, f(6;) — f(0,) < ”0’_9*“5_27‘19’“_9*”5 + ”TGZ
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > £ jterations, n = G\i/,

€2

and starting point within radius R of 6,, outputs 4 satisfying:

f9) <f(6.) +e= minf(0) +

Recall: 614" = 6, — - Vf(6) and 6,11 = Ps(6\%4").

_ 2 yplout) 2
Step 1: For all i, f(6) — f(6.) < Ll 20l ne?,

. _ 2_ _ 2 2
Step 1.a: For all i, f(6;) — f(0.) < 16 =0-Il 27‘19’“ 0.l 4 %

Step 2: %2,21 ;) — f(0,) < % + "TGZ — Theorem.
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