d: (;L, r\“\‘\k-' 9._,

COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

DUIw .
Cameron Musco s WY 1w
University of Massachusetts Amherst. Spring 2020. i i‘w\’
Lecture 21 W
Prddem St & Solofrens Posted:
Ar- A . - 6, D :\[{\\/ s VASY
< z W)

§4 J\,_/- wldes o D
ey & DD 0

SUMMARY

Last Class: Fast computation of the SVD/eigendecomposition.

+ Power method for computing the top singular vector of a matrix.

- Power method is a simple iterative algorithm for solving the
non-convex optimization problem:
max V' X'XV.

\7:H\7H%§1 ——
This Class (and rest of semester):
* More general iterative algorithms for optimization, specifically

gradient descent and its variants.

- What are these methods, when are they applied, and how do you
analyze their performance?

- Small taste of what you can find in COMPSCI 5900P or 6900P.

POWER METHOD THEOREM

v °
\ 2 ﬁ Ty 4D
Theorem (Basic Power Method Convergence) —_—

Lety = 222 be the relative gap between the first and second largest
singular values. If Power Method is initialized with a random
Gaussian vector®® then, with high probability, after t = O (g/—?)
steps: E—

2 raitl
Qnd
Total runtime: t matrix-vector multiplications with XX — 2t
matrix-vector multiplications with X

r\ow/\\om—- & NONZreD

2 <

€.
—

KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

-

KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.
. Xz osy'

Main Idea: Need to separate oq from o; fori > 2.
T~ \/i L+VT ?;(o-’
- Power method: Z o (X7X)! - Z% so component in the

2
direction of v; goes from ¢; — (o?)" - ¢;. G~ 7L

KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

Main Idea: Need to separate oq from o; fori > 2.

- Power method: Z o (X"X)! - Z% so component in the
direction of v; goes from ¢; — (o?)" - ¢;.

- Krylov methods: 20 o py(X'X) - 49 where p; is any degree t

polynomial. So ¢; — pi(a?) - ¢

2 (><‘\)<)* t (XX)H PO

KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

M

t=0 (%) steps for the same guarantee.

ain Idea: Need to separate oq from o; fori > 2.

- Power method: 79 oc (XX)" - 2'(0) S0 component in the (Q
6

S A
direction of v; goes from ¢; — (o) - Cj. > > 2

+ Krylov methods: %) o py (XTX) 79 where p; is any degree t

polynomial. So ¢; — pt(2) . ¢

- Still requires just 2t matr|x vector multiplies. Why?

ol

1 (@)
o, XIX 4 cq (><><>+ (XTi)ji
\ < X%U’) (KTX>7< &fb) ;

KRYLOV SUBSPACE METHODS
T
o (o)
@.{ > ?‘\' (

20
Ty(2)

s 8 & 8 8 &

z VS. z
LS Svds.
mpolynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix X that does at least as well.

CONNECTION TO RANDOM WALKS

The power method is closely related to Markov chain convergence,
random walks on graphs, and the PageRank algorithm.

Consider a random walk on a graph G with adjacency matrix A.

CONNECTION TO RANDOM WALKS

The power method is closely related to Markov chain convergence,
random walks on graphs, and the PageRank algorithm.

Consider a random walk on a graph G with adjacency matrix A.

®

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

CONNECTION TO RANDOM WALKS

The power method is closely related to Markov chain convergence,
random walks on graphs, and the PageRank algorithm.

Consider a random walk on a graph G with adjacency matrix A.

CONNECTION TO RANDOM WALKS

The power method is closely related to Markov chain convergence,
random walks on graphs, and the PageRank algorithm.

Consider a random walk on a graph G with adjacency matrix A.

CONNECTION TO RANDOM WALKS

The power method is closely related to Markov chain convergence,
random walks on graphs, and the PageRank algorithm.

Consider a random walk on a graph G with adjacency matrix A.

CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].
+ Update:

1

Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - degree())

c}\ .‘
/\3@
N

j€neigh(i)

CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - degree())
elgrl T —
p >(\> ~(t— 1)

where Z(j) = degT for all/ € ne/gh _17qfor allj ¢ neigh(i).

T o o P ad sla

% ? O _jDO O "(J) LSl A

Vr af okl

Step 1-1

CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P degree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".
- o
?pr)
f bfy

in

roL
Gy W

CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P degree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".
- 0 = AD=15) P

_ Nt
Pu)_éqD) F()

CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

-[Eitialize: p® =,0,0,...,0]

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P Gegree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".

- p® = AD~'5) = AD"'AD~"...AD~' 5(©)

ttimes

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5
D“ t times
I~
D—1/2ﬁ(t) — (D—1/2AD—W/2)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).
ttimes

1A /l/ - 2
Dop D ABAY- - RSP

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

Ep 9 —=AD"'AD~"...AD'5(®
(< g R
CD—1/2[3‘([) — (D—1 AD—W/Z)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).
k ttimes .
el T e «{’)C—UM%/ med X

-+ D=2 is exactly what vvould obtained by applying t/2 iterations
(of power method to D~/2p

BN

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times

D—1/2ﬁ(t) — (D—1/2AD—W/2)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).

ttimes

- D7/2p(M is exactly what would obtained by applying t/2 iterations
of power method to D~"/25(01 - @
p p O)
- Converges to the top eigenvector of the normalized adjacency
matrix D~/2AD~"/2. p(U — stationary distribution.
otd= otp, @

—_—

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times

D—1/2ﬁ(t) — (D—1/2AD—W/2)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).

ttimes

- D7/2p(M is exactly what would obtained by applying t/2 iterations
of power method to D="/2p()1

- Converges to the top eigenvector of the normalized adjacency
matrix D~/2AD~"/2, p(U — stationary distribution.

- Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the gap
between the top twos\ef‘rgEﬂval-ues of D="/2AD~"/2, The spectral gap.

N~

Questions on Power/Krylov Methods?

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

* Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (not covered in core CS curriculum.
Touched on in ML/advanced algorithms, maybe.)

- Unconstrained convex and non-convex optimization.

—_—

* Linear programming, quadratic programming, semidefinite
programming

CONTINUOUS OPTIMIZATION EXAMPLES

N £(6)

6 eR

9*

10

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

—

f(é;): f()

'3

in
€Rd

>

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

—

f(8,) = minf(@) + ¢

'3

in
€Rd

>

Typically up to some small approximation factor.

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

—

inf(0) +
€Rd

f(g*) =

%13

Typically up to some small approximation factor.
Often under some constraints:
\/[%0? g\,\\G\J\J‘ \’Q—(J\b‘/ &\
el <1, [0 <1 X
- AG< b, §7AF> 0. TT
e e A= VRN
TT=3L) <c ¢t WIs

WHY CONTINUOUS OPTIMIZATION?

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

* Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

home pree = G Aledrorg 4 cm&b&)é

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

* Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

OPTIMIZATION IN ML

Example 1: Linear Regression

OPTIMIZATION IN ML

Example 1: Linear Regression

Model: M(;:__]Ig _ﬂ,{iWith Mz(X) e QB x(D 4. . dé)X(ﬂ)

OPTIMIZATION IN ML

Example 1: Linear Regression

Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).

Parameter Vector: § € RY (the regression coefﬁcients)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

n
LG X.5) =D UM
=1

where ¢ is some measurement of how far Mz(X;) is from y;.

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

n
LEX.H) = > Mz(%).v)
=
where ¢ is some measurement of how far Mz(X;) is from y;.

l& = (My y) (least squares regression)
Y e{ 1 1} and ((D), vi) = In (14 exp(—yiMz(X;))) (logistic

regression)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

n
L(O.X.5) = D UMg(%). y3) + R(0)
i=1
where ¢ is some measurement of how far Mz(X;) is from y;.

“UMHX), i) = (Mz(%5) — y,-)2 (least squares regression)

Cyie {—1,1} and é(Mg()?f),y,) =In (1 + exp(—yiM(;()?,»))) (logistic
regression)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.

minimizing the loss function:
/’\ —

L(6,X, V) = Ze + \|6]3

where ¢ is some measurement of how far Mz(X;) is from y;.

“UMHX), i) = (Mz(%5) — y,-)2 (least squares regression)

Cyie {—1,1} and é(Mg()?f),y,) =In (1 + exp(—yiM(;()?,»))) (logistic
regression)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.

minimizing the loss function:
NN

N

c\\)\ W2 T @—L(_x@ Zé). Vi) + A6]3

o
where ¢ is some measurement of how far Mz(X;) is from y;.

“UMHX), i) = (Mz(%5) — y,-)2 (least squares regression)

Cyie {—1,1} and é(Mg()?f),y,) =In (1 + exp(—yiM(;()?,»))) (logistic
regression)

OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

14

OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: Mz : RY — R.

Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

14

OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R. Mz(X) = (Wout, o (Woo (W1X))).

Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

14

OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R. Mz(X) = (Wout, o (Woo (W1X))).
Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

Optimization Problem: Given data points X;,..., X, and labels
Vi,...,¥Yn € R, find g, minimizing the loss function:

n
T OEDIIFCOND!

OPTIMIZATION IN ML

+ Supervised means we have labels yy, ..., y, for the training points.

OPTIMIZATION IN ML

+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

OPTIMIZATION IN ML

+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning.

OPTIMIZATION IN ML

+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

OPTIMIZATION IN ML

+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

—

* Generalization tries to explain why minimizing the loss Ly 3(¢) on
the training points minimizes the loss on future test points. l.e,,
makes us have good predictions on future inputs.

OPTIMIZATION ALGORITHMS

-

Choice of optimization algorithm for minimizing f(#) will depend on
many things:

- The form of f (in ML, depends on the model & loss function).
—
» Any constraints on 6 (e.g,, ||0] < c).

- Computational constraints, such as memory constraints.

Ly 7(0) = Zﬁ(wﬂ,%‘)
—_—— i=1

16

OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for minimizing f(¢) [l depend on
many things:

+ The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e, [|4]| < o).

- Computational constraints, such as memory constraints.
n
= Zg(Me()_(’») Vi)
i=1

What are some popular optmuzatwom algorithms? Sfo\:].'lu/\q(‘@g«lgwm

kT "Se_ond 'Or-)w)
7 Nan *0{\5 HC}L" {\v"\,—\/’ ’I:WO/-W{AU
ADMW\ ’b‘p§s CP“‘\’L’U}‘ [va:)fmnl)

ADAM | Aeuy—es) (Vemuts ™ 61
WO\'A{,J« 6’]) 16

