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SUMMARY

Last Class: Fast computation of the SVD/eigendecomposition.

+ Power method for computing the top singular vector of a matrix.

- Power method is a simple iterative algorithm for solving the
non-convex optimization problem:
max V' X'XV.

\7:H\7H%§1 ——
This Class (and rest of semester):
* More general iterative algorithms for optimization, specifically

gradient descent and its variants.

- What are these methods, when are they applied, and how do you
analyze their performance?

- Small taste of what you can find in COMPSCI 5900P or 6900P.



POWER METHOD THEOREM
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Theorem (Basic Power Method Convergence) —_—

Lety = 222 be the relative gap between the first and second largest
singular values. If Power Method is initialized with a random
Gaussian vector®® then, with high probability, after t = O (g/—?)
steps: E—

2 raitl
Qnd
Total runtime: t matrix-vector multiplications with XX — 2t
matrix-vector multiplications with X
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KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.
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Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.
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Main Idea: Need to separate oq from o; fori > 2.
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KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

Main Idea: Need to separate oq from o; fori > 2.

- Power method: Z o (X"X)! - Z% so component in the
direction of v; goes from ¢; — (o?)" - ¢;.

- Krylov methods: 20 o py(X'X) - 49 where p; is any degree t

polynomial. So ¢; — pi(a?) - ¢
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KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

M

t=0 (%) steps for the same guarantee.

ain Idea: Need to separate oq from o; fori > 2.

- Power method: 79 oc (XX)" - 2'(0) S0 component in the ( Q
6

S A
direction of v; goes from ¢; — (o ) - Cj. > > 2

+ Krylov methods: %) o py (XTX) 79 where p; is any degree t

polynomial. So ¢; — pt( 2) . ¢

- Still requires just 2t matr|x vector multiplies. Why?
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KRYLOV SUBSPACE METHODS
T
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z VS. z
LS Svds.
mpolynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix X that does at least as well.



CONNECTION TO RANDOM WALKS

The power method is closely related to Markov chain convergence,
random walks on graphs, and the PageRank algorithm.

Consider a random walk on a graph G with adjacency matrix A.
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®

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.
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Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].
+ Update:

1

Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - degree())
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CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - degree())
elgrl T —
p >(\> ~(t— 1)

where Z(j) = degT for all/ € ne/gh _17qfor allj ¢ neigh(i).
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CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P degree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".
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CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P degree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".
- 0 = AD=15) P
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CONNECTION TO RANDOM WALKS

Let p®) € R have i entry p®)(i) = Pr(walk at node i at step t).

-[Eitialize: p® =,0,0,...,0]

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P Gegree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".

- p® = AD~'5) = AD"'AD~"...AD~' 5(©)

ttimes



RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,
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Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5
D“ t times
I~
D—1/2ﬁ(t) — (D—1/2AD—W/2)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).
ttimes
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times

D—1/2ﬁ(t) — (D—1/2AD—W/2)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).

ttimes

- D7/2p(M is exactly what would obtained by applying t/2 iterations
of power method to D~"/25(01 - @
p p O )
- Converges to the top eigenvector of the normalized adjacency
matrix D~/2AD~"/2. p(U — stationary distribution.
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times

D—1/2ﬁ(t) — (D—1/2AD—W/2)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).

ttimes

- D7/2p(M is exactly what would obtained by applying t/2 iterations
of power method to D="/2p()1

- Converges to the top eigenvector of the normalized adjacency
matrix D~/2AD~"/2, p(U — stationary distribution.

- Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the gap
between the top twos\ef‘rgEﬂval-ues of D="/2AD~"/2, The spectral gap.
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Questions on Power/Krylov Methods?



DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.
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DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (not covered in core CS curriculum.
Touched on in ML/advanced algorithms, maybe.)

- Unconstrained convex and non-convex optimization.

—_—

* Linear programming, quadratic programming, semidefinite
programming



CONTINUOUS OPTIMIZATION EXAMPLES
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MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

—

f(é;): f( )
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Given some function f: RY — R, find 6, with:

—

f(8,) = minf(@) + ¢
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Typically up to some small approximation factor.



MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

—

inf(0) +
€Rd

f(g*) =

%13

Typically up to some small approximation factor.
Often under some constraints:
\/[ %0? g\,\\G\J\J‘ \’Q—(J\b‘/ &\
el <1, [0 <1 X
- AG< b, §7AF> 0. TT
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WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

* Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.
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WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

* Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.
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Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

n
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where ¢ is some measurement of how far Mz(X;) is from y;.
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Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
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Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.

minimizing the loss function:
NN

N
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where ¢ is some measurement of how far Mz(X;) is from y;.

“UMHX), i) = (Mz(%5) — y,-)2 (least squares regression)
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Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R. Mz(X) = (Wout, o (Woo (W1X))).

Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

14



OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R. Mz(X) = (Wout, o (Woo (W1X))).
Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

Optimization Problem: Given data points X;,..., X, and labels
Vi,...,¥Yn € R, find g, minimizing the loss function:

n
T OEDIIFCOND!
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OPTIMIZATION IN ML

+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

—

* Generalization tries to explain why minimizing the loss Ly 3(¢) on
the training points minimizes the loss on future test points. l.e,,
makes us have good predictions on future inputs.



OPTIMIZATION ALGORITHMS

-

Choice of optimization algorithm for minimizing f(#) will depend on
many things:

- The form of f (in ML, depends on the model & loss function).
—
» Any constraints on 6 (e.g,, ||0] < c).

- Computational constraints, such as memory constraints.

Ly 7(0) = Zﬁ(wﬂ,%‘)
—_—— i=1
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OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for minimizing f(¢ ) [l depend on
many things:

+ The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e, [|4]| < o).

- Computational constraints, such as memory constraints.
n
= Zg(Me()_(’») Vi)
i=1

What are some popular optmuzatwom algorithms? Sfo\:].'lu/\q(‘@g«lgwm
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