COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.
Lecture 20



LOGISTICS

- Problem Set 3 is due tomorrow at 8pm. Problem Set 4 will be
released very shortly.

- This is the last day of our spectral unit. Then will have 4
classes on optimization before end of semester.



SUMMARY

Last Two Classes: Spectral Graph Partitioning

- Focus on separating graphs with small but relatively balanced cuts.
- Connection to second smallest eigenvector of graph Laplacian.
+ Provable guarantees for stochastic block model.

- Idealized analysis in class. See slides for full analysis.
This Class: Computing the SVD/eigendecomposition.

- Discuss efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.

- High level: a glimpse into fast methods for linear algebraic
computation, which are workhorses behind data science.



EFFICIENT EIGENDECOMPOSITION AND SVD

We have talked about the eigendecomposition and SVD as
ways to compress data, to embed entities like words and
documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on
massive datasets?
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Basic Algorithm: To compute the SVD of full-rank A € R"<¢,
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COMPUTING THE SVD

Basic Algorithm: To compute the SVD of full-rank A € R"<¢,

A=UxV":

- Compute ATA - O(nd?) runtime.

- Find eigendecomposition ATA = VAV - O(d?) runtime.

- Compute L = AV - O(nd?) runtime. Note that L = UX. (*/)

. Seta; = |ILi» and U; = L/||Li[l. - O(nd) runtime.  O(ws
Total runtime: O(nd” +_d’) = 0(nd’) (assume w.l.o.g. n > d)

- If we have n =10 million images with 200 x 200 x 3 = 120,000

pixel values each, runtime is 1.5 x 10" operations!

+ The worlds fastest super computers compute at ~ 100 petaFLOPS
= 10" FLOPS (floating point operations per second).

* This is a relatively easy task for them — but no one else.



FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors of a matrix X € R"™*for k <« d.

- Suffices to computg@,(e R%* and then cpmpute 2 1
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- Use an iterative algorithm to compute dn approXimation to
the top k singular vectors V.

- Runtime will be roughly O(ndk) instead of O(nd?).



FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors of a matrix X € R™*® for k <« d.

- Suffices to compute V, € Rk and then compute
UpEy, = XV,

- Use an iterative algorithm to compute an approximation to
the top k singular vectors V.

- Runtime will be roughly O(ndk) instead of O(nd?).

Sparse (iterative) vs. Direct Method. svd vs. svds.
_— =
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but can easily be generalized to larger k.
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Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors,
but can easily be generalized to larger k.

Goal: Given X € R"<9, with <%VD X = U}:Wﬁnd 7= V.

e A\ .
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POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors,
but can easily be generalized to larger k.

Goal: Given X € R™d with SVD X = UXV, find 7 ~ V.

- Initialize: Choose 29 randomly. E.g. Z9(i) ~ A(0,1).

- Fori=1,...,t O(.‘“él} +O(¢H>

- 20 = (XTX) - Z0-1) Runtime: 2 - nd
- ni = |Z0|, Runtime: d
- 20 = Z0) /n; Runtime: d

Return & %GB

Total Runtime:_O(ndt)
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POWER METHOD
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POWER METHOD INTUITION

Write 7 in the right singular vector basis: VAN
\ : ¥ ) :
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— - AV

X € R"*9: input matrix with SVD X = UXV’. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .
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X € R"*9: input matrix with SVD X = UXV’. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Write 70 in the right singular vector basis:

70 = C1\71 + C2\72 +...+ Cdvd-

Update step: Z() fXTX z’ D = VE’VT . Z-" (then normalize)

LV‘ J/(c\/ fafve [t GV

= C‘ S‘L q) + C7 %l
A S I g E A N *
[ 0 o :
) © o
0 Q o Cy a

X € R"*9: input matrix with SVD X = UXV’. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Write 70 in the right singular vector basis:
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POWER METHOD INTUITION

Write 70 in the right singular vector basis:

70 = C1\71 + C2\72 +...+ Cdvd-

: 70 = XTX . Z0=1) = yg2yT . A1) i
Update step: 7) = X'X - ZU =VxV ZU=1 (then normalize)
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X € R"*9: input matrix with SVD X = UXV’. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Claim 1: Writing 70 = vy + &V + . .. 4 CyVy,

2(1):C1-ff%\71+C2~(7§\72+...+Cd-ﬁé\7d.
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POWER METHOD INTUITION

Claim 1: Writing 70 = vy + &V + . .. 4 CyVy,

2(1):C1-ff%\71+C2~U§\72+...+Cd-ﬁé\7d.

72 — xTxz() = vx2yTz() =

Claim 2:

E(t) =C1- rr%’\_/H +C - (TE[VZ +...+Cq- O—i‘[\_/)d'

—

X € R"*9: input matrix with SVD X = UXV'. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components. TRV

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

0 _ = v N _ . 2t ot ot
Z()—C1V1+C2V2+...+Cdvd — Z()—C](T Vq + Cro5 v2+...+cd(r(,vd

Iteration 13 —

—_rN e = —— = -

When will convergence be Sto@ 10
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POWER METHOD SLOW CONVERGENCE

Slow Case: X has singular values: o4 = 1,0, = .99,03 = .9,04, = .8, ...

Z(O) = C1\71 + C2\72 + ...+ CdVd - Z(t) = C1Ff”\71 + Czﬁgi\ﬁ/’z + ...+ Cdﬁ"l;‘f\?d
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POWER METHOD CONVERGENCE RATE

g elon

Z(O) = C1\71 + C2\72 + ...+ CdVd — Z(t) = C]ff)f\71 + Czﬁgt\ﬁ/’z =+ ...

Write o3 = (1 =)oy for ‘gap’ v = #-%2. How many |
take to have o2t 2t
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rat does it
< ;-0i? C |-&
Q)L\' | i “
e éi (%\in ! 2
| at - 51
-y) <2 S S
Iy (< ! a \/‘/C
PV e) kg (el

X € R™>9: matrix with SVD X = UXV". Singular values o1, 07, ...,04. Vi: top
right singular vector, being computed, Z0): iterate at step i, converging to v;.




POWER METHOD CONVERGENCE RATE

f(o) = C1\71 + C2\72 + ...+ CdVd — 2(0 = C1FT‘)§\71 + szf?\ﬁ/’z + ...+ Cd(T;;TVC/

Write o3 = (1—~)o for ‘gap’ v = Z-%2. How many iterations t does it
take to have o2t < 1. 022 O(1/7).

X € R™>9: matrix with SVD X = UXV". Singular values o1, 07, ...,04. Vi: top
right singular vector, being computed, Z0): iterate at step i, converging to v;.




POWER METHOD CONVERGENCE RATE

f(o) = C1\71 + C2\72 + ...+ CdVd — 2(0 = C1FT‘)§\71 + szf?\ﬁ/’z + ...+ Cd(T;;TVC/

Write o3 = (1—~)o for ‘gap’ v = Z-%2. How many iterations t does it
take to have o2t < 1. 022 O(1/7). 8§20

How many iterations t does it take to have 03! < § - ot?
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X € R™9: matrix with SVD X = UXV". Singular values o4, 07, ...,04. Vi top
right singular vector, being computed, Z(): iterate at step i, converging to .




POWER METHOD CONVERGENCE RATE

0=V + b+ ...+ CaVg = 2D =10V + otV + ..+ Cgo Vg

Write o3 = (1—~)o for ‘gap’ v = Z-%2. How many iterations t does it
take to have o2 < 3 - o7 O(1/7).

How many iterations t does it take to have o' <4 - 07?7 O (logg/é)).

-

X € R™9: matrix with SVD X = UXV". Singular values o4, 07, ...,04. Vi top
right singular vector, being computed, Z(): iterate at step i, converging to .




POWER METHOD CONVERGENCE RATE

20 = G+l t ..+l = 79 = 107 + oV + ..+ Cdﬁ[;tVd
Write o3 = (1 - )0y for ‘gap’ v = 222, How many iterations t does it
take to have (r < i 077 0(1/7).

How many iterations t does it take to have o' <4 - 07?7 O (ng/é)).

How small must we set ¢ to ensure that Cmi‘)dommates all other
components and so 20 is very close to v;?

X € R"9: matrix with SVD X = UXV". Singular values o1, 07, ...,04. Vi: top
right singular vector, being computed, Z(): iterate at step i, converging to V.




RANDOM INITIALIZATION

Claim: When z(9 is chosen with random Gaussian entries, writing
70 = v + GV + ... + CgVg, With very high probability, for all i:

00/ < ] < 0loge)
o1y @)

[~ 41/

X € R">9: matrix with SVD X = UXV". Singular values 4,0, ..., 04. V3 top
right singular vector, being computed, 7(): iterate at step i, converging to v;.
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max
¢ C

J
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right singular vector, being computed, 7(): iterate at step i, converging to v;.
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Claim 1: When z(® is chosen with random Gaussian entries, writing
709 = cvy + Vo + ... + CyVy, with very high probability,
max; 2 < O(d? logd).

Claim 2: Forgap v = ez, aftert =0 (W) iterations:

70 = 107V + ©o3Vo + ..+ Cgo Vg o< 1y + C0Vs + . .. + CgoVg

Ifwesetd =0 (W) by Claim 1 will have:

70 \71+§(\72+...+\7d).

Gives |70 —

X € R">9: matrix with SVD X = UXV". Singular values 4,0, ..., 04. V3 top
right singular vector, being computed, 7(): iterate at step i, converging to v;.
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POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Lety = #22 be the relative gap between the first and second largest
singular values. If Power Method is initialized with a random
Gaussian vector V° then, with high probability, after t = O %)
steps:

- T
|2m—\71H2§6. >< X\/N(

—_—
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POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Lety = #-%2 be the relative gap between the first and second largest
singular values. If Power Method is initialized with a random
Gaussian vector V° then, with high probability, after t = O (%)
steps:

120 — %, < e.

Total runtime: O(t) matrix-vector multiplications.

0 (nnz(x) . log(d/d) =0 (nd . log(d/e)> .
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POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Lety = #-%2 be the relative gap between the first and second largest
singular values. If Power Method is initialized with a random
Gaussian vector V° then, with high probability, after t = O (%)
steps:

120 — %, < e.

Total runtime: O(t) matrix-vector multiplications.

0 (nnz(x) . log(d/d) =0 (nd . log(d/e)> .

v v
How is e dependence?

How is v dependence?



KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.
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KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

Main Idea: Need to separate oq from o; fori > 2.

- Power method: power up to o7t and o?*.

* Krylov methods: apply a better degree t polynomial T¢(o?)
and Ty(o?).

- Still requires just 2t matrix vector multiplies. Why?
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KRYLOV SUBSPACE METHODS

24

8 8 & g 8

Ty(2)

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.

17



GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

- Block Krylov methods

Runtime: O (ndfe lo\g/‘i/f)

to accurately compute the top k singular vectors.
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GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

- Block Krylov methods

Runtime: O (ndfe lo\g/‘i/f)

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O (ndl?- lofg/e)

if you just want a set of vectors that gives an e-optimal
low-rank approximation when you project onto them.
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CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.



CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.

®

At each step, move to a random vertex, chosen uniformly at
random from the neighbors of the current vertex.
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j€neigh(i)
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CONNECTION TO RANDOM WALKS

Let 5® € R" have ith entry ) = Pr(walk at node i at step t).
!

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
( PY= L P degree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree
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- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P degree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree
- Zis the i row of the right normalized adjacency matrix AD~".

. 5(t) — AD—15(t—W)
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CONNECTION TO RANDOM WALKS

Let f®) € R have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].

+ Update:
Pr(walk atiatstept)= Y Pr(walkatjatstep t-1)- 1
PU= 2 P Gegree())
jeneigh(i)
Z p (t—1)

where Z(j) = for allj € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree

- Zis the i row of the right normalized adjacency matrix AD~".

_1_,

- p = AD 5= = AD~'AD" .. p

ttimes

20



RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times

D—1/2ﬁ(t) — (D—1/2AD—W/2)(D—W/ZAD—1/2) o (D—T/ZAD—1/2)(D—1/25(0)).

ttimes

- D725 is exactly what would obtained by applying t/2 iterations
of power method to D~"/2p(9)1

- Will converge to the top singular vector (eigenvector) of the
normalized adjacency matrix D~'/2AD~"/2, Stationary distribution.

- Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the

gap between the top two eigenvalues of AD™". The spectral gap.
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