COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.
Lecture 2

By Next Thursday 1/30:

- Sign up for Piazza.

- Sign up for Gradescope (code on class website) and fill out
the Gradescope consent poll on Piazza. Contact me via email
if you don’t consent to use Gradescope.

LAST TIME

Last Class We Covered:

- Linearity of expectation: E[X + Y] = E[X] + E[Y] always.
- Linearity of variance: Var[X + Y] = Var[X] 4+ Var[Y] if X and ¥
are independent.

- Talked about an application of linearity to estimating the
size of a CAPTCHA database.

TODAY

Today:

- Finish up the CAPTCHA example and introduce Markov's
inequality a fundamental concentration bound that let us
prove that a random variable lies close to its expectation
with good probability.

- Learn about random hash functions, which are a key tool in
randomized methods for data processing. Probabilistic
analysis via linearity of expectation.

- Start on Chebyshev’s inequality: a concentration bound that
is enough to prove a version of the law of large numbers.

CAPTCHA REFRESH

Your CAPTCHA provider claims to have a database of
n = 1,000,000 CAPTCHAS, with a random one selected for each
security check.

- In an attempt to verify this claim, you make m random
security checks. If the database size is n then expected
number of pairwise duplicate CAPTCHAS you see is:

m(m —1
gpj= Y Epy="0 "0
Ljelm,i#

ol | | ol | YR Gl

CAPTCHA REFRESH

If the database size is as claimed (n = 1,000, 000) and you
take m = 1,000 samples:

(m

1
E[D] = mzn) — 4995

You see and suspect that something is
up. But how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a
random variable deviates a certain distance from its mean.

- Useful in understanding how statistical tests perform, the
behavior of randomized algorithms, the behavior of data
drawn from different distributions, etc.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to
check database size, D: number of pairwise duplicates in m random CAPTCHAS.

MARKOV'S INEQUALITY

The most fundamental concentration bound: Markov’s
inequality.

For any non-negative random variable X and any t > 0:
E[X] 1
PriIX > tt- E[X]] < []t

Proof:

EX]=> Pr(X=s)-5>> Pr(X=s)-s

s>t
>3 Pr(X=s)-t
s>t
=t-Pr(X>1).

The larger the deviation t, the smaller the probability. 6

BACK TO OUR APPLICATION

Expected number of duplicate CAPTCHAS:
—1
E[D] = "0 — 4995,

You see D = 10 duplicates.

Applying Markov's inequality, if the real database size is
n = 1,000,000 the probability of this happening is:
E[D] _ 4995
10~ 10
This is pretty small - you feel pretty sure the number of
unique CAPTCHAS is much less than 1,000, 000. But how can
you boost your confidence?

Pr[D > 10] < .05

n: number of CAPTCHAS in database (n = 1,000, 000 claimed) , m: number of
random CAPTCHAS drawn to check database size (m = 1000 in this example),
D: number of pairwise duplicates in m random CAPTCHAS.

HASH TABLES

Want to store a set of items from some finite but massive
universe of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.
Classic Solution: Hash tables

- Static hashing since we won't worry about insertion and
deletion today.

HASH TABLES

Hash Table 128-bit IP addresses

128-bit IP addresses

172.16.254.1

172.16.254.1

B WN P

192.168.1.34 192.168.1.34

16.58.26.164 16.58.26.164) = 1590

16.58.26.164

16.58.26.164)

= 1590

- hash function h : U — [n] maps elements from the universe
to indices 1,---,n of an array.

- Typically |U| > n. Many elements map to the same index.

- Collisions: when we insert m items into the hash table we
may have to store multiple items in the same location
(typically as a linked list).

COLLISIONS

Query runtime: O(c) when the maximum number of collisions
in a table entry is c (i.e., must traverse a linked list of size ¢).

c collisions
A
[\
h(172.16.254.1)| 192.168.1.34)—}{ 216.153.24.4 ‘—P' 172.16.254.1

How Can We Bound c?

- In the worst case could have ¢ = m (all items hash to the
same location).

- Two approaches: 1) we assume the items inserted are
chosen randomly from the universe U or 2) the hash
function is random.

RANDOM HASH FUNCTION

Let h: U — [n] be a random hash function.

- le, forx e U, Pr(h(x) =i)= 1 foralli=1,...,n and
h(x), h(y) are independent for any two items x # y.

- Caveat 1: It is very expensive to represent and compute such
a random function. We will see how a hash function
computable in O(1) time function can be used instead.

- Caveat 2: In practice, often suffices to use hash functions
like MD5, SHA-2, etc. that ‘look random enough’.

Assuming we insert m elements into a hash table of size n,
what is the expected total number of pairwise collisions?

1

LINEARITY OF EXPECTATION

Let C;; = 1if items i and j collide (h(x;) = h(x;)), and 0
otherwise. The number of pairwise duplicates is:
C= > CjEC= > E[G]
LiElm],i# ije[m],i#
(linearity of expectation)

Forany pairi,j: E[C;j] = Pr[C;; = 1] = Pr[h(x;) = h(x;)] = 1.

1 (5) _m(m-1)
Bd= > = ="
1jelm],i#)
Identical to the CAPTCHA analysis from last class!

Xj,X;: pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

COLLISION FREE HASHING

E[C] = m(r;n_”

- For n = 4m? we have: E[C] = ™("-1) < 1.

E[C] _ 1
==

Apply Markov’s Inequality: Pr[C > 1] < 3

1 7
PrlC=0]=1-Pr[C>1>1— - = —.
fC=0]=1-PCZ 1215 =2

Pretty good...but we are using O(m?) space to store m items...

in table.

m: total number of stored items, n: hash table size, C: total pairwise collisions]

13

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 : collision free O(s?) space
. I'sivalues | pashfunction hash table

16.58.26.164

n

- For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7]
- Just Showed: A random function is collision free with probability

> £ so only requires checking O(1) random functions in

expectation to find a collision free one. "

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: S=n+ > S’E[S]=n+ > [,
2

m
E[sT]=E || Y Tngo)=i
=

=E Z Ihe)=i * Ihixo)=i | = Z E {Hh(x,):i'ﬂh(xk):i}o
Lj>-kem] J,ke[m]

 Forj =k, B [Ty - Tngy Sﬂ“ﬂ%?{@ﬁ?g?i,-)z} = Prih(x) =1 = L.

- Forj#k E []Ih(x,):f ']Ih(Xk):ij| = Prih(x) = inh(xe) = 1] = 7.

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage

of two level hashing, s;: # items stored in hash table at position i. 15

SPACE USAGE

E[sf]=) E {Hh(x,):i ' Hh(xk):i]
jokelm]

0 W+2 m 1
o n 2) n?

m m(m —1
_m, m(n 1)
n n

<2(fwesetn=m.)
+ For j' =R, E {ﬁ(,)=i * ”h(,)7‘} = .
: FO!’] * /3, E {i|1(y(r)7‘ ih()7‘} = .

Total Expected Space Usage: (if we set n = m)

n
E[S] = n+Z]E[s,2] <n+n-2=3n=3m.
P

Near optimal space with O(1) query time!

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

16

SOMETHING TO THINK ABOUT

What if we want to store a set and answer membership queries
in O(1) time. But we allow a small probability of a false
positive: query(x) says that x is in the set when in fact it isn't.

Can we use even smaller space?
Many Applications:

- Filter spam email addresses, phone numbers, suspect IPs,
duplicate Tweets.
- Quickly check if an item has been stored in a cache or is new.

- Counting distinct elements (e.g,, unique search queries.)

17

EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Prih(x) = i] = 1 fori € 1,...,n and h(x), h(y) independent
forx #£y.

- To compute a random hash function we have to store a table
of x values and their hash values. Would take at least O(m)
space and O(m) query time if we hash m values. Making our
whole quest for O(1) query time pointless!

x h(x)

X, | 45

X, 1004

X3 7107

Xm | 12

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prih(x) = h(y)] < -

.

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = h(y)] = + (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p > |U]. Choose random
a,b € [p] with a # 0. Let:

h(x)=(ax+b mod p) mod n. 10

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function.k-wise Independent
Hash Function. A random hash function from h : U — [n] is
pairwisek-wise independent if for all i € [n]:

Prlh(x) =h(y) =1 = % Prih(x1) =h(x2) =...=h(xx) =il = —.

Which is a more stringent requirement? 2-universal or pairwise
independentpairwise independent?

1 1
Pr[h(x)]—ZPr[h =il=n ="

A closely related (ax + b) mod p construction gives pairwise
independence on top of 2-universality.
20

Questions on linearity of expectation, Markov’s, hashing?

21

NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

2. Then we'll show how a simple twist on Markov's can give a
much stronger result.

22

ANOTHER APPLICATION

Randomized Load Balancing:

s @

l 2 R_equests

/N
B AR, .. AD

o I111] (o 1111] (o111

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?

23

WEAKNESS OF MARKOV'S

Expected Number of requests assigned to server i:

n n
. L on
E[R] = 21 IE:[]Irequestj assigned to il = 21 Pr[j assigned to i] = S
j= j=
If we provision each server be able to handle
, what is the probability that a server is

overloaded?

Applying Markov's Inequality
ER] 1

2E[R] 2
Not great..half the servers may be overloaded.

PriR; = 2E[R{]] <

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

2%

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov’'s Inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:
Chebyshev's inequality:

E[X?] var(X]

PH(X -~ EDRI(XZ €) = PrOC 2) < =2

(by plugging in the random variable X — E[X])

25

CHEBYSHEV'S INEQUALITY

Var[X
Pr(X—=E[X]| > t) < t2[]
What is the probability that X falls s standard deviations from

it's mean?

Pr(IX — E[X]| > s - \/Var[X]) < m _ Siz

Why is this so powerful?

X: any random variable, t,s: any fixed numbers.

26

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.)
random variables X4, ..., X, with mean x and variance 2.

How well does the sample average S = 1 37 | X; approximate
the true mean u?

1 & 1 o 1 o?
var[s] = 5 Var [ZX,-] = FZVar[Xi] =n ol = -
i=1 p

By Chebyshev's Inequality: for any fixed value € > 0,
_ Varls] _ a?

= &2 pe
Law of Large Numbers: with enough samples n, the sample

average will always concentrate to the mean.

Pr(|S — E[S]u| = €)

- Cannot show from vanilla Markov's inequality.
27

BACK TO LOAD BALANCING

Recall that R; is the load on server i when n requests are randomly
assigned to k servers. "

R,‘ = Z R,"j Var[R,-] = Var[R,-J]
j=1 j=1
where R;; is 1if request j is assigned to serveriand 0 o.w.

Var[R] = E [(R,-,,- - lE[R,-,,-])z}

— Pr(Ri; =1)- (1= E[R;])" + Pr(R;; = 0) - (0 — E[R;;])*

Applying Chebyshev's:
2n n n/k k
Pr (R,- > k) <pr(R-ER]I>7) < 2 =
Overload probability is extremely small when k < n! 28

NEXT TIME

Chebyshev’s Inequality: A quantitative version of the law of
large numbers. The average of many independent random
variables concentrates around its mean.

Chernoff Type Bounds: A quantitative version of the central
limit theorem. The average of many independent random
variables is distributed like a Gaussian.

s

Frequency

o
x|

3.9 4.2 45 4.8 5.1 5.4 5.7 6.0
Means

29

Questions?

30

