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LOGISTICS

- Problem Set 3 due this upcoming Monday at 8pm.
- Final to be held on Zoom: May 6th from 1:00pm-3:00pm.



SUMMARY

Last Class: Spectral Clustering

- Splitting a graph into communities is important in network
analysis and non-linear data analysis.

- Want to find a small cut that is also balanced.

- Argued that the second smallest eigenvector of the graph
Laplacian matrix can be used to find such a cut.

- Intuitive argument but not a formal proof that the identified

cut is ‘good. T T
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SUMMARY

Last Class: Spectral Clustering

- Splitting a graph into communities is important in network
analysis and non-linear data analysis.

- Want to find a small cut that is also balanced.

- Argued that the second smallest eigenvector of the graph
Laplacian matrix can be used to find such a cut.

- Intuitive argument but not a formal proof that the identified
cut is ‘good-.

This Class: The Stochastic Block Model

- Asimple clustered graph model where we can prove the
effectiveness of spectral clustering.
- One of the most important random graph models.



GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.



GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

- Very common in algorithm design for data analysis/machine
learning (can be used to justify least squares regression,
k-means clustering, PCA, etc.)



STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let G,(p, g) be a
distribution over graphs on n nodes, split randomly into two groups
B and C, each with n/2 nodes.
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(including self-loops).
+ Any two nodes in different groups are connected with prob. g < p.

- Connections are independent.
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+ Any two nodes in the same group are connected with probability p
(including self-loops).

+ Any two nodes in different groups are connected with prob. g < p.
- Connections are independent. iy




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gu(p, q).

Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.
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Let G be a stochastic block model graph drawn from Gu(p, q).

- Let A € R"*" be the adjacency matrix of G, ordered in terms
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Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.
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Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group. 6
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Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




EXPECTED ADJACENCY SPECTRUM
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Letting G be a stochastic block model graph drawn from G ;’:(
Gn(p,q) and A € R™" be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?
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If we compute v, then we recover the communities B and C!



EXPECTED ADJACENCY SPECTRUM
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If we compute v, then we recover the communities B and C!

- Can show that for G ~ Gp(p, q), A is close to E[A] with high
probability (matrix concentration inequality).

- Thus, the true second eigenvector of A is close to
[1,1,1,...,=1,—1,—1] and gives a good estimate of the
communities.



SPECTRUM OF PERMUTED MATRIX

Goal is to recover communities - so adjacency matrix won't be
ordered in terms of community ID (or our job is already done!)
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SPECTRUM OF PERMUTED MATRIX

Goal is to recover communities - so adjacency matrix won't be
ordered in terms of community ID (or our job is already done!)
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- Actual adjacency matrix is PAP" where P is a random
permutation matrix and A is the ordered adjacency matrix.

- Exercise: The first two eigenvectors of PAPT are P\71\ar1d PV,.

- PV, = [1w gives commumty ids. H

PTPIT 10



EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q), A € R"™" be its adjacency matrix and L be its
Laplacian, what are the elgenvectors and eigenvalues of E[L]?
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EXPECTED LAPLACIAN SPECTRUM

P n - - P, q’n o
Letting G be a stochastic bloc|< model graph drawn from
Gn(p,q), A € R"™" be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?
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EXPECTED LAPLACIAN SPECTRUM

R

Upshot: The second small eigenvector of E[L] is xp ¢ — the
indicator vector for the cut between the communities.
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Upshot: The second small eigenvector of E[L] is xp ¢ — the
indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this eigenvector
would exactly recover the two communities B and C.



EXPECTED LAPLACIAN SPECTRUM

mdlcator vector for the cut between the commumtles C

- If the random graph G (equivilantly A and L) were exactly y
equal to its expectation, partitioning using this eigenvector -

would exactly recover the two communities B and C. 9
T:0 | +3

How do we show that a matrix (e.g., A) is close to its O
expectation? Matrix concentration inequalities. Vy LV -2
- 0.y

- Analogous to scalar concentration inequalities like Markovs,/
Chebyshevs, Bernsteins.

- Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and ML.



MATRIX CONCENTRATION

e

Matrix Concentration Inequality: If p > O (“’%:”), then with
high probability

|A — E[A]ll2 < O(v/pn).

where || - ||2 is the matrix spectral norm (operator norm).

\.

For any X € R™9, [IX|l2 = MaX,era. 7,1 [1X2]2-
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of the largest magnitude eigenvalue.
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MATRIX CONCENTRATION

Matrix Concentration Inequality: If p > O (“’%:”), then with
high probability

|A — E[A]ll2 < O(v/pn).

where || - ||2 is the matrix spectral norm (operator norm).

\.

For any X € R™9, [IX|l2 = MaX,era. 7,1 [1X2]2-
Exercise: Show that ||X||, is equal to the largest singular value of X.
For symmetric X (like A — E[A]) show that it is equal to the magnitude
of the largest magnitude eigenvalue.
For the stochastic block model application, we want to show that the
second eigenvectors of A and E[A] are close. How does this relate to
their difference in spectral norm?
14



EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A € RI*9 are symmetric with ||A — Al < e
and eigenvectors vq,Vs,...,Vg and Vq, o, ..., V4. Letting
6(vj, ;) denote the angle between v; and v;, for all I:

g €
v, 7)) < ——

where X\, ..., \q are the eigenvalues of A.

.

The errors get large if there are eigenvalues with similar
magnitudes.



EIGENVECTOR PERTURBATION
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0 1 0 1+¢ 0 ¢
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (@)
A —E[A]ll; < O(v/pn).
. . ' ot
Claim 2 (Davis-Kahan): For p > O (%)
O(yv/pn)

SinO(vy, ) < ——V 2
(V2. %) Minjzi [Ai = Ajl

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively.
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APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sinf(v,,v,) < 0 ((p:qﬁ))\/ﬁ)'

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 18




APPLICATION TO STOCHASTIC BLOCK MODEL
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So Far: sinf(v,,v,) <O (

i 1 ?
o q)f) What does this give us:

- Can show that this implies |[|[v, — % |2 < O (ﬁ) (exercise).

© Vs ﬁx&c: the community indicator vector.
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- Every i where v, (i), v»(i) contributes > 1 to [|v, — V|2

* So they differ in sign in at most O ( ) positions.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. g < p: connection probability between clusters. n:
number of nodes. v,, V,: second eigenvectors of A and E[A] respectively. 18




APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O ((p 7 ) nodes.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O ((p 7 ) nodes.
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- Why does the error increase as g gets close to p?
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of

this vector, we will correctly assign all but O ((p 7 ) nodes.

B C B C

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
L A
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03 .—.01.02 .01 —.04 —.03 —.01 —.03 - 1 L1t 1 L 1 1
.03 .—.01.02 . . . . . 5 A =R R
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- Why does the error increase as g gets close to p?
- Even when p — g = 0(1/+/n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.
19



