COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 19

LOGISTICS

- · Problem Set 3 due this upcoming Monday at 8pm.
- · Final to be held on Zoom: May 6th from 1:00pm-3:00pm.

Last Class: Spectral Clustering

- Splitting a graph into communities is important in network analysis and non-linear data analysis.
- · Want to find a small cut that is also balanced.
- Argued that the second smallest eigenvector of the graph Laplacian matrix can be used to find such a cut.
- Intuitive argument but not a formal proof that the identified cut is 'good'.

 Tr A = C

VLV 5.7 V1=0 cut is belance

Last Class: Spectral Clustering

- Splitting a graph into communities is important in network analysis and non-linear data analysis.
- · Want to find a small cut that is also balanced.
- Argued that the second smallest eigenvector of the graph Laplacian matrix can be used to find such a cut.
- Intuitive argument but not a formal proof that the identified cut is 'good'.

This Class: The Stochastic Block Model

- A simple clustered graph model where we can prove the effectiveness of spectral clustering.
- · One of the most important random graph models.

GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces. But it is difficult to give any formal guarantee on the 'quality' of the partitioning in general graphs.

GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces. But it is difficult to give any formal guarantee on the 'quality' of the partitioning in general graphs.

Common Approach: Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model.

 Very common in algorithm design for data analysis/machine learning (can be used to justify least squares regression, k-means clustering, PCA, etc.)

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_n(p,q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with n/2 nodes.

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_n(p,q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.
- Connections are independent.

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_n(p,q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with n/2 nodes. Let $G_n(p,q)$ be a distribution over graphs on $G_n(p,q)$ be a distribution over $G_n(p,q)$ be a distribut

- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.
- · Connections are independent.

Vn-1

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

• Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

• Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

• Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

 $G_n(p,q)$: stochastic block model distribution. B, C: groups with n/2 nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

· Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms

 $G_n(p,q)$: stochastic block model distribution. B,C: groups with n/2 nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i,j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i,j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[A]$?

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?

If we compute \vec{v}_2 then we recover the communities B and C!

If we compute \vec{v}_2 then we recover the communities B and C!

- Can show that for $G \sim G_n(p,q)$, **A** is close to $\mathbb{E}[A]$ with high probability (matrix concentration inequality).
- Thus, the true second eigenvector of A is close to $[1,1,1,\ldots,-1,-1]$ and gives a good estimate of the communities.

SPECTRUM OF PERMUTED MATRIX

Goal is to recover communities – so adjacency matrix won't be ordered in terms of community ID (or our job is already done!)

SPECTRUM OF PERMUTED MATRIX

Goal is to recover communities – so adjacency matrix won't be ordered in terms of community ID (or our job is already done!)

- Actual adjacency matrix is PAP^T where P is a random permutation matrix and A is the ordered adjacency matrix.
- **Exercise:** The first two eigenvectors of PAP^T are $P\vec{v}_1$ and $P\vec{v}_2$.

$$\mathbf{P}\vec{v}_2 = [1, -1, 1, -1, \dots, 1, 1, -1]$$
 gives community ids.

Letting G be a stochastic block model graph drawn from $G_n(p,q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of \mathbb{R}

Laplacian, what are the eigenvectors and eigenvalues of
$$\mathbb{E}[L]$$
?

$$\mathbb{E}[L] = \mathbb{E}[D] - \mathbb{E}[A] = \mathbb{E}[L] = \mathbb{E}[$$

$$P_{\frac{1}{2}}^{\frac{1}{2}} n \cdot P_{\frac{1}{2}}^{\frac{1}{2}} n \cdot Qn = 0$$
Letting G be a stochastic block model graph drawn from

 $G_n(p,q)$, $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its

Laplacian, what are the eigenvectors and eigenvalues of
$$\mathbb{E}[L]$$
?

$$\mathbb{E}[A]: \quad \forall_1, \forall_2, \forall_3 \dots \forall_n \quad \forall_i = 0 \quad \forall i > 2.$$

$$\forall_1 \in \mathbb{F}[4] \quad \forall_1 \in \mathbb{F}[4] \quad \forall$$

$$E[L] = (P+q)^{\gamma} \vee_{l} - E[A]_{l} = (P+q)^{\gamma} \vee_{l} - (P+q)^{\gamma} \vee_{l} = (Q+q)^{\gamma} \vee_{l} = (Q+q)^{\gamma}$$

E[L]
$$V_1 = (P+q)^n V_1 - E[AV_1 = (P+q)^n V_1 - (P+q)^n V_1 = (Q+q)^n V_1 - (P-q)^n V_2 = (Q+q)^n V_2$$

Second smallest algorithm

E[L] $V_1 = (P+q)^n V_2 - (P-q)^n V_2 = (Q+q)^n V_2$

[Second smallest algorithm

E[L] $V_1 = (P+q)^n V_1 - (P+q)^n V_2 = (Q+q)^n V_2$

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities *B* and *C*.

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the $\mathfrak B$ indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities *B* and *C*.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities. $\sqrt{1}$

- Analogous to scalar concentration inequalities like Markovs,
 Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.

MATRIX CONCENTRATION

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

MATRIX CONCENTRATION

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

Exercise: Show that $\|\mathbf{X}\|_2$ is equal to the largest singular value of \mathbf{X} . For symmetric \mathbf{X} (like $\mathbf{A} - \mathbb{E}[\mathbf{A}]$) show that it is equal to the magnitude of the largest magnitude eigenvalue.

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \leq O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

Exercise: Show that $\|\mathbf{X}\|_2$ is equal to the largest singular value of \mathbf{X} . For symmetric \mathbf{X} (like $\mathbf{A} - \mathbb{E}[\mathbf{A}]$) show that it is equal to the magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the second eigenvectors of A and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $A, \overline{A} \in \mathbb{R}^{d \times d}$ are symmetric with $\|A - \overline{A}\|_2 \leq \epsilon$ and eigenvectors v_1, v_2, \ldots, v_d and $\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_d$. Letting $\theta(v_i, \overline{v}_i)$ denote the angle between v_i and \overline{v}_i , for all i:

$$sin[\theta(v_i, \bar{v}_i)] \le \frac{\epsilon}{\min_{j \ne i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of $\overline{\mathbf{A}}$.

The errors get large if there are eigenvalues with similar magnitudes.

EIGENVECTOR PERTURBATION

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \le \frac{O(\sqrt{pn})}{\min_{j \ne i} |\lambda_i - \lambda_j|}$$

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \le \frac{O(\sqrt{pn})}{\min_{j \ne i} |\lambda_i - \lambda_j|}$$

Recall: $\mathbb{E}[A]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \le \frac{O(\sqrt{pn})}{\min_{j \ne i} |\lambda_i - \lambda_j|}$$

Recall: $\mathbb{E}[A]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right).$$

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn})$.

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \le \frac{O(\sqrt{pn})}{\min_{j \ne i} |\lambda_i - \lambda_j|}$$

Recall: $\mathbb{E}[A]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right).$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

Claim 1 (Matrix Concentration): For
$$p \ge O\left(\frac{\log^4 n}{n}\right)$$
, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn})$.

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2, \overline{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq i} |\lambda_i - \lambda_j|} \leq \frac{O(\sqrt{pn})}{(p-q)n/2} = O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$

Recall: $\mathbb{E}[A]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right).$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$.

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

• Can show that this implies $||v_2 - \bar{v}_2||_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- · Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{p}}\right)$. What does this give us?

- Can show that this implies $||v_2 \bar{v}_2||_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- \bar{V}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

• Every i where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $||v_2 - \bar{v}_2||_2^2$.

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $||v_2 \bar{v}_2||_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

- Every *i* where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $||v_2 \bar{v}_2||_2^2$.
- · So they differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

• Why does the error increase as q gets close to p?

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

- Why does the error increase as q gets close to p?
- Even when $p-q=O(1/\sqrt{n})$, assign all but an O(n) fraction of nodes correctly. E.g., assign 99% of nodes correctly.