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LOGISTICS

- Problem Set 3 is due Monday 4/13 at 8pm.



SUMMARY

Last Class: Applications of Low-Rank Approximation

- Low-rank matrix completion (predicting missing
measurements using low-rank structure).

- Entity embeddings (e.g., LSA, word embeddings). View as
low-rank approximation of a similarity matrix.

- Start on spectral graph theory.
This Class: More Spectral Graph Theory & Spectral Clustering.

- Using eigendecomposition to partition graphs into clusters.
- Clustering non-linearly separable data.

- Application to the stochastic block model and community
detection.



SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.

Community detection in naturally occurring networks.




CUT MINIMIZATION

Simple Idea: Partition clusters along minimum cut in graph.
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Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

Let Ve R" be a cut indicator: V(i) =1ifi € S. V(i) = —-1ifi e T.
Want v to have roughly equal numbers of 1s and —1s. l.e,, V1 ~ 0.



THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D —A'is
the graph Laplacian.
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For any vector v,

VLV = 7DV — VAV = 2 d(i)i(iy? — Z iA(/} J) (i) - v(j)

i=1 =1 j=1



THE LAPLACIAN VIEW

For a cut indicator vector Ve {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VLV = Y jyee (Vi) = V(j))? = 4 - cut(S, T).
2. V1T =|V|—S|.
Want to minimize both V7LV (cut size) and V"1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved by eigendecomposition.
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SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:
1

Vn ==

— . T= argmin V'LV
vn VERN with [|7]|=1
with eigenvalue V! LV, = 0. Why?
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Vo1 = argmin VLV
veR" with ||V]|=1, V],v=0

If Vo_q were in {—1,1}" it would have:
VI LVy_q = cut(S, T) as small as possible
- l.e., Vo—q; would indicate the smallest perfectly balanced cut.

- The eigenvector v,_1 € R" is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"%": diagonal
degree matrix, L € R"™": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

V) = argmin VLV
veRIwith ||V]|=1, V] 1=0

Set S to be all nodes with V,(i) < 0, T to be all with V,(i) > 0.
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?
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Spectral Clustering:

. Compiite cmallest b nonzero eicenvectors v.. . v. . of1



LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e., minimize

VL = Z [V(i) — V(j

(ij)eE
Embedding points with coordinates given by
Vo—1()), Va—2(j), - - -, Va_r(j)] ensures that coordinates connected by

edges have minimum total squared Euclidean distance.

- Spectral Clustering

- Laplacian Eigenmaps

+ Locally linear embedding
* Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian)
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LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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