COMPSCI 514: ALGORITHMS FOR DATA SCIENCE
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LOGISTICS

- Problem Set 3 is due Monday 4/13 at 8pm.
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SUMMARY

Last Class: Applications of Low-Rank Approximation

- Low-rank matrix completion (predicting missing
measurements using low-rank structure).

- Entity embeddings (e.g.,, LSA, word embeddings). View as
low-rank approximation of a similarity matrix.

- Start on spectral graph theory.



SUMMARY

Last Class: Applications of Low-Rank Approximation

- Low-rank matrix completion (predicting missing
measurements using low-rank structure).

- Entity embeddings (e.g.,, LSA, word embeddings). View as
low-rank approximation of a similarity matrix.

- Start on spectral graph theory.
This Class: More Spectral Graph Theory & Spectral Clustering.

- Using eigendecomposition to partition graphs into clusters.
- Clustering non-linearly separable data.

- Application to the stochastic block model and community
detection.



SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.
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SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.

This Class? Find this cut using eigendecomposition. First -
motivate why this type of approach makes sense.
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Simple Idea: Partition clusters along minimum cut in graph.
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Simple Idea: Partition clusters along minimum cut in graph.
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Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.



CUT MINIMIZATION

Simple Idea: Partition clusters along minimum cut in graph.

ary Karate Club Graph
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Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

- letvVe R" beacutindicator: V(i) =1ifi € S. V(i) = =1ifi e T.
—_— —
Want V to have roughly equal numbers of 1s and —1s. l.e, VT~ 0.
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THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D — A is
the graph Laplacian.
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THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D — A is
the graph Laplacian.
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THE LAPLACIAN VIEW

For a cut indicator vector Vv € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT 4

1 VILV = 37 e (V) = V())? = 4 - cut(S, T).
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THE LAPLACIAN VIEW

For a cut indicator vector Vv € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VILV = 37 e (V) = V() = 4 - cut(S, T).
2. V1= V| —1S).
Want to minimize both VLV (cut size) and V"7 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved by eigendecomposition.



SMALLEST LAPLACIAN EIGENVECTOR
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The smallest eigenvector of the Laplacian is:
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with eigenvalue vTLvn =0.
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.
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SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:

~ T - . T
Vo=—-1= argmin V'LV
vn vER with [[7]]=1

with eigenvalue vTLvn = 0. Why?
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:
S 1

Vo=—-1= argmin V'LV
vn vER with [[7]]=1
with eigenvalue V! LV, = 0. Why?
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Vn_1 = argmin VLV
—  veR" with ||V||=1, VV=0

—_—

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Vn_1 = argmin VLV
veR" with ||V||=1, V,v=0

If Vo1 were in {—1,1}" it would have:

(-‘\7%_1 LVh_1 :\'Icut(S, T) as small as possible
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degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.
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SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is|given by:

Vn_1 = argmin Ly e
VERN with ||V]|=1, V;v=0
If Vo_1 were in {—1,1}" it would have: %
- V1 _,LVp_q = cut(S,T) as small as possible at

- l.e, Vo1 would indicate the smallest perfectly balanced cut.
- The eigenvector V,_1 € R" is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing llﬂ*‘”
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Set S to be all nodes with V(i) < 0, T to be all with V(i) > 0.
| |



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

v = argmin VLV
veRdwith ||V]|=1, V1=0

Set S to be all nodes with V,(i) < 0, T to be all with V,(i) > 0.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

v = argmin VLV
veRIwith ||7]|=1, 7}T=0

Set S to be all nodes with V;(i) < 0, T to be all with V(i) > 0.

_ /" m""\ w LmU\Xl\b‘{\
\/ ’] 1 JLv
n-t = - . T 08
’ — P \ ;
C\//\ | \/ ’ - \ IS '.:5 > o
! /. v on ] N2
0(-)(\’\0 OF- Q \\SS 5 o ’é .220‘5 0
° ) 4 / > g-_};‘{/”A o /’ 02
1 oF ««-&96 04
N\ N~
: - ’ f—i‘ — \\ 08




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal

degree matrix, L € R"*": Laplacian matrix L = A — D. 10




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.
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The Shi-Malik normalized cuts algorithm is one of the most
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The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to §Vpl|t

the graph into more than two parts? 5\"\
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Spectral Clustering: /
- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p Of L.
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degree matrix, L € R"%": Laplacian matrix L = A — D. 10
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The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts? -~ K

h Vo1 =~ Vil

Spectral Clustering:

- Compute smallest k nonzero eigenvectors V,_1, ..., V,_p Of L.
- Represent each node by its corresponding row in V € R7*k
whose rows are Vp_1,...V,_p.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 10




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p Of L.

- Represent each node by its corresponding row in V € R7*k
whose rows are Vp_1,...V,_p.

- Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 10
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The smallest eigenvectors of L = D — A give the orthogonal
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LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. I.e,, minimize
VLY = > [(0) — V()P
(ij)ek
Embedding points with coordinates given by
[Va_1(), Vn—2(j), - - -, Va_r(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.



LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. I.e,, minimize
VL = V(i) — V().
(%E[ (i) =Vl
Embedding points with coordinates given by
[Va_1(), Vn—2(j), - - -, Va_r(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.




LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal for ?“A\m%
‘functions’ that are smoothest over the graph. l.e, minimize I W ok
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- Laplacian Eigenmaps

- Locally linear embedding

+ Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian)




LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:
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LAPLACIAN EMBEDDING

Embedding with eigenvectors V,_+, V,_,: (linearly separable)
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