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LOGISTICS

- Problem Set 2 was released this weekend. Due Monday 4/13.
- See Piazza (and email from college) for clarification on P/F
policy.



SUMMARY

Last Few Classes: Low-Rank Approximation and PCA
- Compress data that lies close to a k-dimensional subspace.

- Equivalent to finding a low-rank approximation of the data matrix
X: X~ XV fo¥ orthonormal V € RI**.

- Optimal solution via PCA (eigendecomposition of X'X or
equivalently, SVD of X).

* Singular vectors of X are the eigenvectors of XX” and X'X. Singular
values squared are the eigenvalues.



SUMMARY

Last Few Classes: Low-Rank Approximation and PCA
- Compress data that lies close to a k-dimensional subspace.

- Equivalent to finding a low-rank approximation of the data matrix
X: X =~ XW' for orthonormal V € R¥xk,

- Optimal solution via PCA (eigendecomposition of X'X or
equivalently, SVD of X).

- Singular vectors of X are the eigenvectors of XX" and X"X. Singular
values squared are the eigenvalues.
This ClassWs_ofo. beyond compression.
+ Matrix completion and collaborative filtering
- Entity embeddings (word embeddings, node embeddings, etc.)
- Low-rank approximation for non-linear dimensionality reduction.

- Spectral graph theory, spectral clustering.
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MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.
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Under certain assumptions, can show that Y Well approximates X on
both the observed and (most importantly) unobserved entries.
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ENTITY EMBEDDINGS
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Dimensionality reduction embeds d-dimensional vectors into

d’ dimensions. But what about when you want to embed

objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)

- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional onﬁp)m
feature vector and then apply low-rank approximation. A
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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Term Document Matrix X Low-Rank Approximation via SVD
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- If the error ||X — YZT||¢ is small, then on average,
Xiq =~ (YZT)i,a = <Viaza>-
- le, {Vi,Z,) = 1when doc; contains word,.
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EXAMPLE: LATENT SEMANTIC ANALYSIS
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Another View: Each column of Y represents a ‘topic’ yi(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,
associates with that topic.



EXAMPLE: LATENT SEMANTIC ANALYSIS
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word, and word, appear in many of the same
documents.
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z = XV}

* The columns of V,, are equivalently: the top k eigenvectors of X'X.
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- In an SVD decomposition we set Z = XV}

- The columns of V, are equivalently: the top k eigenvectors of X'X.
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Term Document Matrix X Low-Rank Approximation via SVD
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word, and word, appear in many of the same
documents.
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- The columns of V, are equivalently: the top k eigenvectors of X'X.
The eigendecomposition of X'X is X'X = VZV".

- What is the best rank-k approximation ofx X7 le.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z = XV}

- The columns of V, are equivalently: the top k eigenvectors of X'X.
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EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space. [%Ag

- Embedding is via low-rank approximation of xTéz where (),(T\Xla_,g is
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EXAMPLE: WORD EMBEDDING
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LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q 1, is
the number of documents that both word, and word, appear in.
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- Think about X'X as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,,.
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EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q 1, is
the number of documents that both word, and word, appear in.

- Think about X'X as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,,.

- Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.

- Replacing X"™X with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastText, etc.
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EXAMPLE: WORD EMBEDDING
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Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix.u\leural word embedding as implicit
matrix factorization, Levy and Goldberg
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SIMILARITY VIA GRAPHS

A common way of encoding similarity is via a graph. E.g, a
k-nearest neighbor graph.

- Connect items to similar items, possibly with higher weight
edges when they are more similar.
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LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j
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LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j

X, A
0100
X, 101 1
X
— ] U =) | 190 1
NP 0110
[) X3

In LSA example, when X is the term-document matrix, X'X is like an
adjacency matrix, where word, and word,, are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).



NORMALIZED ADJACENCY MATRIX
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degree matrix.
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X, A D
0100 1000
X4 101 1 03200
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What is the sum of entries in the it column of A? The
(weighted) degree of vertex i.

Often, A is normalized as A = D=/2AD~1/2 where D is the
degree matrix.
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Often, A is normalized as A = D~"/2AD~"/2 where D is the
degree matrix.



NORMALIZED ADJACENCY MATRIX

A D12 A D-12
0 .00 1000][o100][1000
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What is the sum of entries in the it column of A? The
(weighted) degree of vertex i.

Often, A is normalized as A = D~"/2AD~"/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.
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ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of ATA = A%. These are
just the eigenvectors of A. e \//\\/T
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ADJACENCY MATRIX EIGENVECTORS

orthonormal diagonal orthonormal
A
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ADJACENCY MATRIX EIGENVECTORS

orthonormal diagonal orthonormal
A i
Ay V T 1
V, k kot
A ~ V1 e Uy Ak

- Similar vertices (close with regards to graph proximity)
should have similar embeddings. l.e., Vi(i) should be similar
to Vi()j)-



SPECTRAL EMBEDDING
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