COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 17

LOGISTICS

- · Problem Set 2 was released this weekend. Due Monday 4/13.
- See Piazza (and email from college) for clarification on P/F policy.

Last Few Classes: Low-Rank Approximation and PCA

- · Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix $X: X \approx X V V^T$ for orthonormal $V \in \mathbb{R}^{d \times k}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).
- Singular vectors of **X** are the eigenvectors of **XX**^T and **X**^T**X**. Singular values squared are the eigenvalues.

Last Few Classes: Low-Rank Approximation and PCA

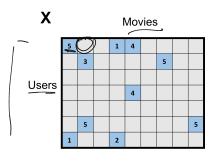
- · Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix $\mathbf{X}: \mathbf{X} \approx \mathbf{X}\mathbf{V}\mathbf{V}^T$ for orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).
- Singular vectors of **X** are the eigenvectors of **XX**^T and **X**^T**X**. Singular values squared are the eigenvalues.

This Class: Applications of low-rank approx. beyond compression.

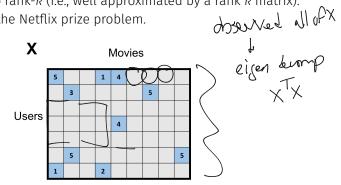
- · Matrix completion and collaborative filtering
- Entity embeddings (word embeddings, node embeddings, etc.)
- · Low-rank approximation for non-linear dimensionality reduction.
- · Spectral graph theory, spectral clustering.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix).

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.



Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.



mo 11 X-B 11=

Solve:
$$Y = \underset{\text{rank} - k}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$$

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

regressim will will will Movies 1.2 3.8 4.2 5 3.4 3.2 4 4.1 4.1 4.2 3 3 2.3 3 3 3.4 4 4.2 3.9 4.4 5.3 2.2 3.1 2.9 3.2 1.5 1.8 Solve: $Y = \underset{\text{rank} - k \ B}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$

Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into $\chi = d'$ dimensions. But what about when you want to embed objects other than vectors?

ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *d'* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *d'* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

feature vector and then apply low-rank approximation.

Losse

Level 2

Level 2

Level 2

Level 3

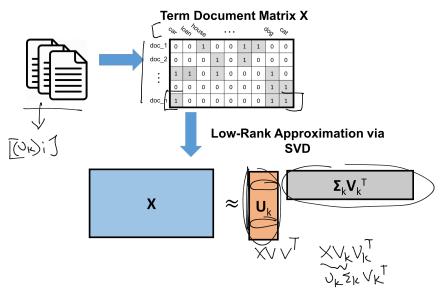
Level 3

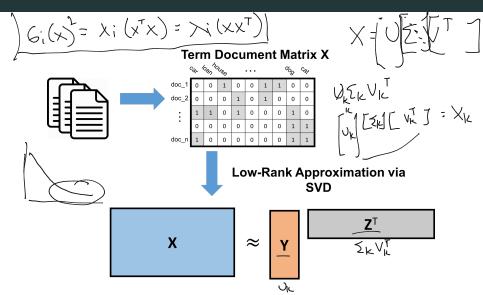
Level 4

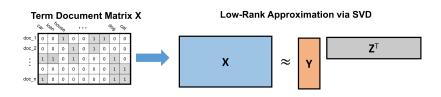
Level 3

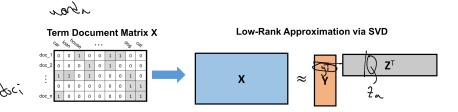
Level 4

Leve



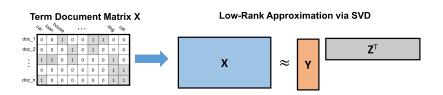






· If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

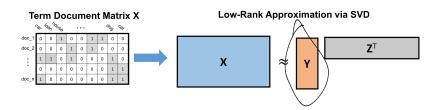
$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$



• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

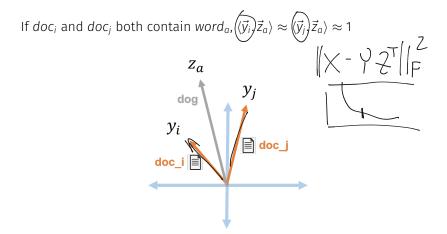
• I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.

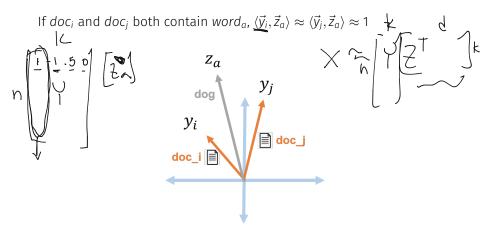


• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

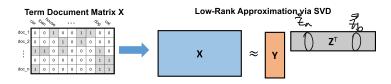
$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i \rangle \vec{z}_a \rangle \approx \langle \vec{y}_j \rangle \vec{z}_a \rangle \approx 1$.

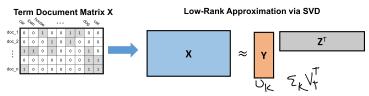




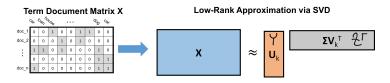
Another View: Each column of Y represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic j. $\vec{z_a}(j)$ indicates how much $word_a$ associates with that topic.



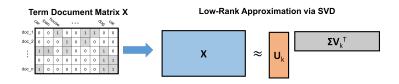
• Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.



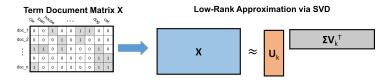
- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX .



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_k \mathbf{V}_{K}^\mathsf{T}$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- In an SVD decomposition we set $\underline{Z} = \Sigma_k V_k^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = \underbrace{V\Sigma^2 V^T}$.
- What is the best rank-k approximation of X^TX ? I.e. arg min_{rank-k B} $\|X^TX B\|_F$ $\mathbb{Z}^{\frac{1}{2}}$ $\|X^TX B\|_F$ $\|X^TX B\|_F$ $\|X^TX B\|_F$

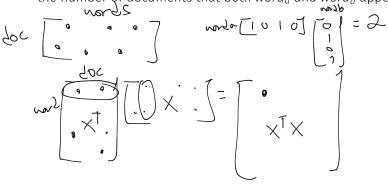


- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.
- What is the best rank-k approximation of X^TX ? I.e. $\arg\min_{\text{rank} = k} \|X^TX B\|_F$

$$\cdot \mathbf{X} \mathbf{V} = \mathbf{V}_k \mathbf{\Sigma}_k^2 \mathbf{V}_k^{\mathsf{T}} = \mathbf{Z} \mathbf{Z}^{\mathsf{T}}.$$

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.



X~ PILZI

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

• Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a,b) being the similarity between $word_a$ and $word_b$.

LSA gives a way of embedding words into *k*-dimensional space.

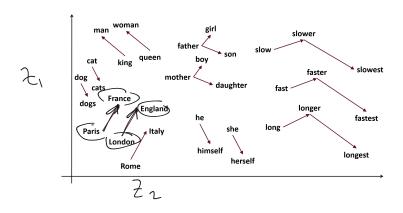
• Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

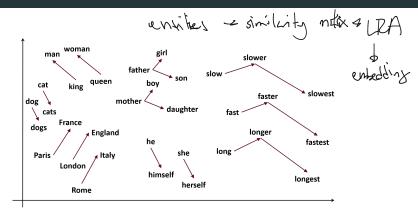
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
 - Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

LSA gives a way of embedding words into *k*-dimensional space.

• Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.





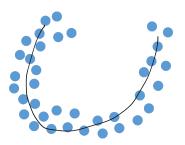
Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg

A common way of encoding similarity is via a graph. E.g., a *k*-nearest neighbor graph.

· Connect items to similar items, possibly with higher weight edges when they are more similar.

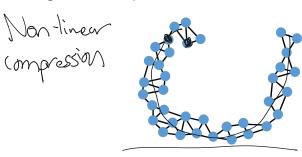
A common way of encoding similarity is via a graph. E.g., a *k*-nearest neighbor graph.

· Connect items to similar items, possibly with higher weight edges when they are more similar.



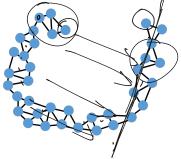
A common way of encoding similarity is via a graph. E.g., a *k*-nearest neighbor graph.

· Connect items to similar items, possibly with higher weight edges when they are more similar.



A common way of encoding similarity is via a graph. E.g., a *k*-nearest neighbor graph.

· Connect items to similar items, possibly with higher weight edges when they are more similar.



Is this set of points compressible? Does it lie close to a low-dimensional subspace?

A common way of encoding similarity is via a graph. E.g., a *k*-nearest neighbor graph.

· Connect items to similar items, possibly with higher weight edges when they are more similar.

Is this set of points compressible? Does it lie close to a low-dimensional subspace?

LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

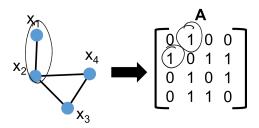
Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} = \text{ edge weight between nodes } i \text{ and } j$

LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

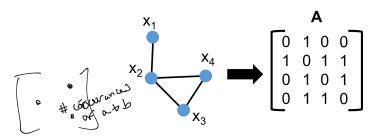
 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} = \text{ edge weight between nodes } i \text{ and } j$



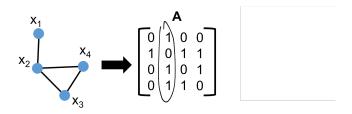
LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

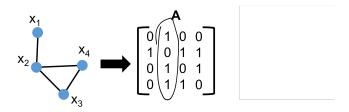
 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} = \text{ edge weight between nodes } i \text{ and } j$



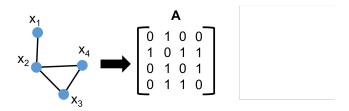
In LSA example, when X is the term-document matrix, X^TX is like an adjacency matrix, where $word_a$ and $word_b$ are connected if they appear in at least 1 document together (edge weight is # documents they appear in together).



What is the sum of entries in the i^{th} column of A?

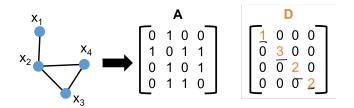


What is the sum of entries in the i^{th} column of A? The (weighted) degree of vertex i.



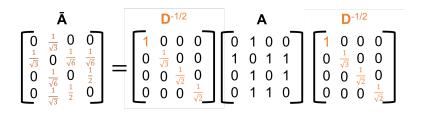
What is the sum of entries in the *i*th column of A? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\underline{\bar{\bf A}} = \underline{{\bf D}^{-1/2}{\bf A}{\bf D}^{-1/2}}$ where **D** is the degree matrix.



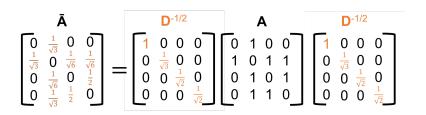
What is the sum of entries in the *i*th column of A? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\bar{\mathbf{A}} = \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$ where **D** is the degree matrix.



What is the sum of entries in the *i*th column of A? The (weighted) degree of vertex *i*.

Often, \underline{A} is normalized as $\bar{A} = \underline{D}^{-1/2} \underline{A} \underline{D}^{-1/2}$ where \underline{D} is the degree matrix.

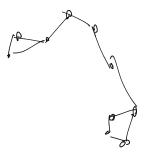


What is the sum of entries in the *i*th column of A? The (weighted) degree of vertex *i*.

Often, ${\bf A}$ is normalized as ${\bf \bar A}={\bf D}^{-1/2}{\bf A}{\bf D}^{-1/2}$ where ${\bf D}$ is the degree matrix.

Spectral graph theory is the field of representing graphs as matrices and applying linear algebraic techniques.

How do we compute an optimal low-rank approximation of A?



How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{A}^2$.

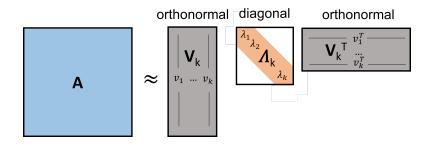
How do we compute an optimal low-rank approximation of A?

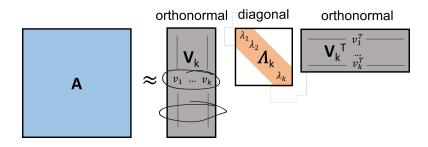
• Project onto the top k eigenvectors of $\mathbf{A}^T \mathbf{A} = \mathbf{A}^2$. These are just the eigenvectors of \mathbf{A} .

$$A = V \wedge V^{T}$$

$$A^{T}A = A^{2} = V \wedge V^{T}V \wedge V^{T}$$

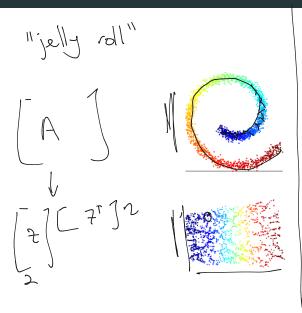
$$= V \wedge^{2} V^{T}$$





• Similar vertices (close with regards to graph proximity) should have similar embeddings. I.e., $V_k(i)$ should be similar to $V_k(j)$.

SPECTRAL EMBEDDING



Sumary LRA ced beyond compression of vetors - Matrix conspersion - entity unbedding -nonliner Linension