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summary

Last Class: Low-Rank Approximation, Eigendecomposition, and PCA

• Can approximate data lying close to in a k-dimensional subspace
by projecting data points into that space.

• Finding the best k-dimensional subspace via eigendecomposition
(PCA).

• Measuring error in terms of the eigenvalue spectrum.

This Class: Finish Low-Rank Approximation and Connection to the
singular value decomposition (SVD)

• Finish up PCA – runtime considerations and picking k.

• View of optimal low-rank approximation using the SVD.

• Applications of low-rank approximation beyond compression.
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basic set up

Set Up: Assume that data points x⃗1, . . . , x⃗n lie close to any
k-dimensional subspace V of Rd. Let X ∈ Rn×d be the data matrix.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• VVT ∈ Rd×d is the projection matrix onto V .
• X ≈ X(VVT). Gives the closest approximation to X with rows in V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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low-rank approximation via eigendecomposition

V minimizing ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XV∥2F =
k∑
j=1

∥X⃗vj∥22

Solution via eigendecomposition: Letting Vk have columns v⃗1, . . . , v⃗k
corresponding to the top k eigenvectors of the covariance matrix XTX,

Vk = argmax
orthonormal V∈Rd×k

∥XV∥2F

• Proof via Courant-Fischer and greedy maximization.
• Approximation error is ∥X∥2F − ∥XVk∥2F =

∑d
i=k+1 λi(XTX).

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 3



low-rank approximation via eigendecomposition
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spectrum analysis

Plotting the spectrum of the covariance matrix XTX (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close x⃗1, . . . , x⃗n are to a low-dimensional subspace).

• Choose k to balance accuracy and compression.
• Often at an ‘elbow’.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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spectrum analysis

Exercise: Show that the eigenvalues of XTX are always positive.
Hint: Use that λj = v⃗Tj XTX⃗vj.
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interpretation in terms of correlation

Recall: Low-rank approximation is possible when our data features
are correlated.

Our compressed dataset is C = XVk where the columns of Vk are the
top k eigenvectors of XTX.

What is the covariance of C? CTC = VTkXTXVk = VTkVΛVTVk = Λk

Covariance becomes diagonal. I.e., all correlations have been
removed. Maximal compression.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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algorithmic considerations

What is the runtime to compute an optimal low-rank
approximation?

• Computing the covariance matrix XTX requires O(nd2) time.
• Computing its full eigendecomposition to obtain v⃗1, . . . , v⃗k
requires O(d3) time (similar to the inverse (XTX)−1).

Many faster iterative and randomized methods. Runtime is
roughly Õ(ndk) to output just to top k eigenvectors v⃗1, . . . , v⃗k.

• Will see in a few classes (power method, Krylov methods).

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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singular value decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X ∈ Rn×d with rank(X) = r can be written as X = UΣVT.

• U has orthonormal columns u⃗1, . . . , u⃗r ∈ Rn (left singular vectors).
• V has orthonormal columns v⃗1, . . . , v⃗r ∈ Rd (right singular vectors).
• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular
values).

The ‘swiss army knife’ of modern linear algebra. 9



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we know that
XVkVTk is the best rank-k approximation to X (given by PCA).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.
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the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX = UkΣkVTk
Correspond to projecting the rows (data points) onto the span
of Vk or the columns (features) onto the span of Uk
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the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX = UkΣkVTk

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

12



the svd and optimal low-rank approximation

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X. 13



applications of low-rank approximation

Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.

• Used for many reasons other than dimensionality
reduction/data compression.
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matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Solve: Y = argmin
rank−k B

∑
observed (j,k)

[
Xj,k − Bj,k

]2
Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries. 15



entity embeddings

Dimensionality reduction embeds d-dimensional vectors into
d′ dimensions. But what about when you want to embed
objects other than vectors?

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation.
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example: latent semantic analysis
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example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.
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example: latent semantic analysis

If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1

Another View: Each column of Y represents a ‘topic’. y⃗i(j) indicates
how much doci belongs to topic j. z⃗a(j) indicates how much worda
associates with that topic.
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example: latent semantic analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if wordi and wordj appear in many of the same
documents.

• In an SVD decomposition we set Z = ΣkVTK.
• The columns of Vk are equivalently: the top k eigenvectors of XTX.
The eigendecomposition of XTX is XTX = VΣ2VT.

• What is the best rank-k approximation of XTX? I.e.
argminrank−k B ∥XTX− B∥F

• XTX = VkΣ2
kVTk = ZZT.
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example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XTX: where (XTX)a,b is
the number of documents that both worda and wordb appear in.

• Think about XTX as a similarity matrix (gram matrix, kernel matrix)
with entry (a,b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.

• Replacing XTX with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc. 21



example: word embedding

Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.
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summary

Summary:

• Can use the SVD to understand optimal low-rank
approximation in terms of the dual row/column projection
view: XVkVTk = UkUTkX = UkΣkVTk.

• A generalization of eigendecomposition: singular vectors are
eigenvectors of XXT and XTX.

• Applications to low-rank approximation to matrix
completion and entity embeddings.

Next Time: Low-rank representations of graphs and networks.
Beginning of spectral graph theory.
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