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SUMMARY

Last Class: Low-Rank Approximation, Eigendecomposition, and PCA
- Can approximate data lying close to in a k-dimensional subspace
by projecting data points into that space.

- Finding the best k-dimensional subspace via eigendecomposition
(PCA).

* Measuring error in terms of the eigenvalue spectrum.

This Class: Finish Low-Rank Approximation and Connection to the
singular value decomposition (SVD)

+ Finish up PCA - runtime considerations and picking k.

- View of optimal low-rank approximation using the SVD.

- Applications of low-rank approximation beyond compression.



BASIC SET UP

Set Up: Assume that data points X, ..., X, lie any
k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
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Let V4, ...,V be an orthonormal basis for V and V € R¥** be the

matrix with these vectors as its columns.
- W' e R9%9 s the onto V.

- X = X(WT). Gives the closest approximation to X with rows in V.

[ X1,...,%n € R%: data points, X € R"*9: data matrix, 4, ..., V, € R%: orthogo- ] 2
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LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
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Solution via eigendecomposition: Letting V, have columns V4,. ..,V
corresponding to the top k eigenvectors of the covariance matrix XX,
Ve=  argmax  |XV|?

orthonormal VERd Xk

* Proof via Courant-Fischer and greedy maximization.

- Approximation error is ||X||# — [|XV||z = ZLM Ai(XTX).

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-
nal basis for subspace V. V e R9>%k: matrix with columns V4, .. ., V. 3




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION
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SPECTRUM ANALYSIS

Plotting the of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close Xi,..., X, are to a low-dimensional subspace).
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error of optimal low rank
approximation

- Choose k to balance accuracy and compression.

- Often at an ‘elbow’.

[ X,...,% € R% data points, X € R"*9: data matrix, v4,...,V, € R top ] 5
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SPECTRUM ANALYSIS

784 dimensional vectors

eigendecomposition
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Exercise: Show that the eigenvalues of X'X are always positive.
Hint: Use that \; = \7J-TXTX\7J~.



INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. i

floors| sale price
home 1 2 2 195,000
home 2 a 1 310,000
home n 5 3 450,000

Our compressed dataset is C = XV, where the columns of Vj, are the
top k eigenvectors of X'X.

C'C = VXXV, = VIVAV'V), = A,
l.e, all correlations have been
removed. Maximal compression.

Xi,...,%X € RY data points, X € R">9: data matrix, v4,...,¥, € R top
eigenvectors of XX, V,, € RY>k: matrix with columns V4, ..., V.




ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank
approximation?

- Computing the covariance matrix XX requires O(nd”) time.
- Computing its full eigendecomposition to obtain Vy,. ..,V
requires O(d”) time (similar to the inverse (X"X)™7).

Many faster iterative and randomized methods. Runtime is
roughly to output just to top k eigenvectors Vi, ..., V.

- Will see in a few classes (power method, Krylov methods).

Xi,...,%X € RY data points, X € R"*9: data matrix, v4,...,V, € R top
eigenvectors of XX, V, € RY>k: matrix with columns V4, ... , V.




SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™9 with rank(X) = r can be written as X = UXV".

- U has orthonormal columns i, ..., U, € R" (left singular vectors).

-V has orthonormal columns V4, ..., V, € RY (right singular vectors).
- X is diagonal with elements o4y > 0, > ... > o, > 0 (singular

values).
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The ‘swiss army knife’ of modern linear algebra.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV':
X'X = VEUTUZV" = VE?V' (the eigendecomposition)
Similarly: XX" = UZVIVEUT = UZ°U’.

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX" respectively.

So, letting Vi, € RY** have columns equal to V4, ..., Vi, we know that
XV, V} is the best rank-k approximation to X (given by PCA).

What about UkULX where U, € R"** has columns equal to U, ..., Ux?

X € R4 data matrix, U € R"*MankX): matrix with orthonormal columns
Uh, Uy, ... (left singular vectors), V. e RIxmank(X). matrix with orthonormal
columns V4, ¥, . .. (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin n, _p gernxd |[X — BJ|F is given by:
Xp = XVV], = ULULX = ULE,V}
Correspond to projecting the rows (data points) onto the span
of Vi, or the columns (features) onto the span of U,
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = arg min o —k sernxo ||[X — B||¢ is given by:

Xp = XViV], = URU[X = U XV},

X € R4 data matrix, U € R"*MnkX): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RI*mank(X): matrix with orthonormal
columns V4, %, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

X € R4 data matrix, U € R"*MankX): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e Rdxrank(X); matrix with orthonormal
columns v, v, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.
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APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.

- Used for many reasons other than dimensionality
reduction/data compression.
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MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

X Movies Y Movies

5 1 4 49 (31| 3 (1.1(3.8(4.1(4.1(3.4|46

3 5 36| 3 3 112|38|42| 5 (34|48

28| 3 3 123|3 3 3 3 (32

Users Users
4 41 3 3 4 (4141|142 3 3

28| 3 3 123| 3 3 3 3 |34

5 5 22| 5 3 4 (42|39|44| 4 |53

1 2 1 (33| 3 [(22(31(29(3.2(15(|1.8

Solve: Y=argmin Y [Xx By’
rank =R B ;p oo rved (j,k)

Under certain assumptions, can show that Y well approximates X on

both the observed and (most importantly) unobserved entries. 5



ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into
d’ dimensions. But what about when you want to embed
objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)

- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X
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Low-Rank Approximation via
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
o /‘75/;4%@ % %
docilofof1|{ofof1]|21]|0]0
[ ] [ ] [ o o 1 1 x ~ Y
doc_nj 1 0 [ o [ o [ 1 1

* If the error ||X — YZT||r is small, then on average,
Xi,a ~ (YZT)i,a = <)7fvza>-

- le., (Vi,Z,) ~ 1 when doc; contains word,.

* If doc; and doc; both contain wordy, (Vi,Za) =~ (Vj,Za) = 1.



EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc; and doc; both contain wordy, (Vi,Za) ~ (¥, Za) =1

Zq

Yj
Vi
doc_j
doc i

Another View: Each column of Y represents a ‘topic’ y;(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,
associates with that topic.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD Term Documen
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- Just like with documents, Z, and Z, will tend to have high dot
product if word; and word; appear in many of the same
documents.

- In an SVD decomposition we set Z = X,V}.

- The columns of Vj, are equivalently: the top k eigenvectors of X'X.
The eigendecomposition of X'X is X'X = VE?V'.

- What is the best rank-k approximation of X'X? l.e.
argmmrankfk B ”XTX - B”F

- XX =V, Z3V] =27,

docifofo[a]ofo]2]2]0]0 doc_1f o
oefelele ‘ A oefele
_ ) ~ |y :

doc_n
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EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X"X), 5 is
the number of documents that both word, and word, appear in.

- Think about X"X as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,.

+ Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.

- Replacing X'X with these different metrics (sometimes
appropriately transformed) leads to popular word embedding

algorithms: word2vec, GloVe, fastTest, etc. 21



EXAMPLE: WORD EMBEDDING

woman
irl
n g slower

ma
\\ father slow
2 king e slowest

faster

dog \ mother
\ cats daughter fast
dogs France
England longer
/ / he /" fastest
Paris Italy \ long
Londor/

himself
longest
herself &
Rome

Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit

matrix factorization, Levy and Goldberg.
2



SUMMARY

Summary:

- Can use the SVD to understand optimal low-rank
approximation in terms of the dual row/column projection
view: XVpV} = ULUIX = ULV}

- A generalization of eigendecomposition: singular vectors are
eigenvectors of XX and X'X.

- Applications to low-rank approximation to matrix
completion and entity embeddings.

Next Time: Low-rank representations of graphs and networks.
Beginning of spectral graph theory.
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