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SUMMARY

Last Class: Low-Rank Approximation, Eigendecomposition, and PCA
- Can approximate data lying close to in a k-dimensional subspace
by projecting data points into that space.

- Finding the best k-dimensional subspace via eigendecomposition

(PCA). XTXJé Vi~ - N

+ Measuring error in terms of the eigenvalue spectrum.

This Class: Finish Low-Rank Approximation and Connection to the
singular value decomposition (SVD)

* Finish up PCA - runtime considerations and picking k.

- View of optimal low-rank approximation using the SVD.

* Applications of low-rank approximation beyond compression.



BASIC SET UP

Set Up: Assume that data points X;, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let Vi, ...,V be an orthonormal basis for V and V € R9** pe the
matrix with these vectors as its columns.

- W' e R s the projection matrix onto V.
—
" XA XéVVT). ives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V. 2
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Set Up: Assume that data points X, ..., X, lie any
k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
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Let V4, ...,V be an orthonormal basis for V and V € R9*k be the
matrix with these vectors as its columns.
- W' e R s the onto V.

- X = X(WT). Gives the closest approximation to X with rows in V.

X,..., % € RY data points, X € R"*: data matrix, ¥, . .., V, € RY: orthogo-
nal basis for subspace V. V e R9>*: matrix with columns ¥4, .. . , . )




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
k
argmax [[XV||p = > X3
orthonormal VERIxF ~——— =1

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V. 3
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V minimizing ||X — XW'||2 is given by:
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orthonormal VERIX =1

Solution via eigendecomposition: Letting Vi, have columns V4, ...,V
corresponding to the top k eigenvectors of the covariance matrix XX, le
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orthonormal VERAx*F F X )< J,
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Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V. 3




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:

—
argmax IXVI[z = ZHXVJHZ
orthonormal VERd Xk \_//l/\f

Solution via eigendecomposition: Letting Vi, have columns V4, ...,V
corresponding to the top k eigenvectors of the covariance matrix X'X,
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- Proof via Courant-Fischer and greedy maximization.
Appro><|mat|on error is |[X[|2 — || XV4|2 = 320 pa Ai(XTX).
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Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V. 3




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X’X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).

X1,...,%X € RY data points, X € R"%9: data matrix, v1,...,%, € R top
eigenvectors of XX, V, € RI¥k: matrix with columns V4, .. . , V. 5
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X1,...,%X € RY data points, X € R"%9: data matrix, v1,...,%, € R top
eigenvectors of XX, V, € RI¥k: matrix with columns V4, .. . , V. 5
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Plotting the of the covariance matrix XX (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).

784 dimensional vectors
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eigenvectors of XX, V, € RYXk: matrix with columns ¥, .. . , 7. 5




SPECTRUM ANALYSIS

Plotting the of the covariance matrix XX (its eigenvalues)
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X’X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).

784 dimensional vectors

eigendecomposition

—

error from best rank-
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X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R?%k: matrix with columns ¥, . . ., V.
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X’X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how

close X;,...,X, are to a low-dimensional subspace).
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- Often at an ‘elbow’.

X1,
eigenvectors of X'X, V, € R?*k: matrix with columns ¥, . .

JXn € R% data points, X € R"%%: data matrix, ¥, ...
N

.V, € RY: top




SPECTRUM ANALYSIS
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features

are correlated. o
floors sale price
home 1 2 0] 2 195,000
home 2 4 1 310,000
home n 5 3 450,000
X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.




INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S

floors sale price i T
home 1 2 2 195,000 ~ \{ \/
home 2 4 1 310,000 ~_ k' l(_

—

J, \l\~-\V)

home n s 3 450,000 VL
_ 7
Our compressed dataset is C = XV where the columns of V, are the

top k eigenvectors of X'X. n J

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.




INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features

10000* 10* =~
are correlated.
floors sale price
home 1 2 2 195,000
home 2 4 1 310,000
homen 5 3 450,000

Our compressed dataset is C = XV, where the columns of V, are the
top k eigenvectors of X'X.

_ T
7 Ve ><1><\I\L

v VAV

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.




INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S

floors sale price

home 1 2 2 195,000
home 2 a4 1 310,000

home n 5 3 450,000

Our compressed dataset is C = XV, where the columns of V, are the
top k eigenvectors of X'X.

C'C = VXXV,

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.




INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S
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Recall: Low-rank approximation is possible when our data features
are correlated. S

floors sale price

home 1 2 2 195,000
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Our compressed dataset is C = XV, where the columns of V, are the
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S

floors| sale price
home 1 2 2 195,000
home 2 a4 1 310,000
home n 5 3 450,000

Our compressed dataset is C = XV, where the columns of V, are the
top k eigenvectors of X'X.

C"C = VIXTXV), = VIVAV'V,, = A,
l.e., all correlations have been
removed. Maximal compression.

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.




ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank
approximation?

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?%k: matrix with columns ¥V, . . ., V.
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ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank
approximation?

- Computing the covariance matrix X'X requires O(nd?) time.
- Computing its full eigendecomposition to obtain Vi, ...,V
requires O(d®) time (similar to the inverse (XX)~").
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ALGORITHMIC CONSIDERATIONS

Jd “<n
What is the runtime to compute an optimal low-rank

approximation?

- Computing the covariance matrix X'X requires O(nd”) time.
- Computing its full eigendecomposition to obtain Vi, ...,V
requires O(d”) time (similar to the inverse (XX)~7").

Many faster iterative and randomized methods. Runtime is
roughly to output just to top k eigenvectors vi, ..., V.

- Will see in a few classes (power method, Krylov methods).

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?%k: matrix with columns ¥V, . . ., V.




SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices.
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The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).
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SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"*9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).

-V has orthonormal columns v;, ..., V, € RY (right singular vectors).

- X is diagonal with elements oy > 0y > ... > o, > 0 (singular

values).
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SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"*9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., 0, € R" (left singular vectors).

-V has orthonormal columns v;, ..., V, € RY (right singular vectors).
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The ‘swiss army knife’ of modern linear algebra.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*9 in its singular value decomposition X = UXV":

X'X =

X € R"*9: data matrix, U € R"*ak(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION
T
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The best low-rank approximation to X:
Xp = argmin 4n, _p gernxd |[X — BJ|¢ is given by:
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X: 5"\
Xp = argmin 4p, _p gernxd |[X — B||¢ is given by: J S\né*
Xp = kavT UxUIX et
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:
X = XV,V], = ULUIX
Correspond to projecting the rows (data points) onto the span
of Vy, or the columns (features) onto the span of U,

Row (data point) compression Column (feature) compression

10000 10°

bedrooms| floors| sale price
home 1 2 2 195,000
home 2 4 1 310,000

home n 5 3 450,000




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:

Xp = XVRV] = ULUIX = OKig\/K

Correspond to projecting the rows (data points) onto the span
of V, or the columns (features) onto the span of U,

nxd orthonormal  positive diagonal ~ orthonormal
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin un, _p gernxd |[X — BJ|¢ is given by:

Xp = XViV}, = UUEX

Correspond to projecting the rows (data points) onto the span
of V, or the columns (features) onto the span of U,

n x d (rank k)
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin 4n, _p gernxd |[X — BJ|¢ is given by:

><\J \L':Q\L- e X, = XVKVL = URULX = Ul?zl?vl
—_— - =

Correspond to projecting the rows (data points) onto the span
of Vy, or the columns (features) onto the span of U,

nxd (rank-k)  orthonormal positive diagonal ~ orthonormal
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X:
Xp = argmin o —k sernx |[X — B||¢ is given by:

Xp = XVV], = ULUIX = U X, V)

X € R4 data matrix, U € RMX1nkX). matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

X € R"™ 9 data matrix, U € R"*kX). matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RI*xrankX). matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.




APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.

14



APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.

- Used for many reasons other than dimensionality
reduction/data compression.
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MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
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MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
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MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y Movies

49 (3.1 11(3.8|41 41|34 |46

3.6 12(38(42| 5 (34|48

2.8 2313 |33 22

Users

34 4.1 (41|42

2.8 2313 |33 3.4

v w | w|w|w
S|l w | w | w

2.2 4 (423944 53

wlw|w|w| w|w|lw
IS

22(31)29(32|15(18

Solve: Y=argmin Y [Xx— B )’

rank =R B ohserved (j,k)

Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.
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ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into
d’ dimensions. But what about when you want to embed
objects other than vectors?

- Documents (for topic-based search and classification)

- Words (to identify synonyms, translations, etc.)

- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X
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Term Document Matrix X Low-Rank Approximation via SVD
%
% By, Uy een %, %
dctlofof21|ofof|2]|1f[0]0
doe2fo oo ! o ! 01ele
oloo oo [0 |5 X =1y
doc_nj1 ofojojofo|oO 1 1

- If the error ||X — YZT||¢ is small, then on average,
Xiq =~ (YZT)i,a = <Viaza>-

- le, {Vi,Z,) = 1when doc; contains word,.

* If doc; and doc; both contain wordg, (Vi,Za) ~ (¥, Za) = 1.

18
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If doc; and doc; both contain wordy, (Vi,Za) ~ (Vj,Za) =1

Zq

Yj

doc_j

Vi
doc_i
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EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc; and doc; both contain wordy, (Vi,Za) ~ (Vj,Za) =1

Zq

Yj

doc_j

Vi
doc_i

Another View: Each column of Y represents a ‘topic’ yi(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,
associates with that topic.
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word; and word; appear in many of the same
documents.
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word; and word; appear in many of the same
documents.

- In an SVD decomposition we set Z = XV}
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- Just like with documents, Z, and Z,, will tend to have high dot
product if word; and word; appear in many of the same
documents.

- In an SVD decomposition we set Z = XV}

- The columns of V, are equivalently: the top k eigenvectors of X'X.
The eigendecomposition of X'X is XX = VE2V'.

- What is the best rank-k approximation of XX? l.e.
arg mmrank -k B ”XTX - BHF

-« XX =V, ZpV) = 27

20



EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q 1, is
the number of documents that both word, and word, appear in.
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EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q 1, is
the number of documents that both word, and word, appear in.

- Think about XX as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,,.

* Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.

- Replacing X"X with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc. 21



EXAMPLE: WORD EMBEDDING

woman o
1
man \ er slower
\ father 4‘ son slow
cat king 94€€" boy
f slowest
dog \4 mother <‘ aster
cats daughter fast
France

dogs England longer
/ he fastest
Paris / Italy \ she long
London \
/ himself longest
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EXAMPLE: WORD EMBEDDING

woman

g"' slower
\\ father slow
cat king queen
slowest

faster

dog \4 mother
\ cats daughter fast
dogs France
England longer
/ / he fastest
Paris Italy long
Londo%

h|mself
longest
herself &
Rome

Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit

matrix factorization, Levy and Goldberg.
22



SUMMARY

\\ ,né FWT
K= X\KL\/L
Summary: [\M&ll l (\/GK n)\&(:%?;u

- Can use the SVD to understand optimal low-rank
approximation in terms of the dual row/column prOJectlcSn (”*‘J')

T T
view: XVkYk — UkUkX.— U,?Zkv,?. N | >< 7\\]\/1—\5 O&ﬂﬂ)b
- A generalization of eigendecomposition: singufar vectors-are
__eigenvectors of XX" and X"X. - L\/T
- Applications to low-rank approximation to matrix 3
completion and entity embeddings. Ji
. . \/\M
Next Time: Low-rank representations of graphs and networks.\nK
Beginning of spectral graph theory.
g g p grap y Q’HcD[L
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