COMPSCI 514: ALGORITHMS FOR DATA SCIENCE Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 15 # Last Class: Low-Rank Approximation - · When data lies in a k-dimensional subspace \mathcal{V} , we can perfectly embed into k dimensions using an orthonormal span $\mathbf{V} \in \mathbb{R}^{d \times k}$. - When data lies close to \mathcal{V} , the optimal embedding in that space is given by projecting onto that space. $$\mathbf{XVV}^T = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\text{arg min}} \|\mathbf{X} - \mathbf{B}\|_F^2.$$ # This Class: Finding $\mathcal V$ via eigendecomposition. - How do we find the best low-dimensional subspace to approximate X? - · PCA and its connection to eigendecomposition. #### **BASIC SET UP** **Set Up:** Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix. Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. - $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} . - $X \approx X(VV^T)$. Gives the closest approximation to X with rows in \mathcal{V} . $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$. #### DIMENSIONALITY REDUCTION AND LOW-RANK APPROXIMATION **Low-Rank Approximation:** Approximate $X \approx XVV^T$. - XVV^T is a rank-k matrix all its rows fall in V. - · X's rows are approximately spanned by the columns of V. - · X's columns are approximately spanned by the columns of XV. $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$. ## **DUAL VIEW OF LOW-RANK APPROXIMATION** Row (data point) compression # Column (feature) compression | 10000* bathrooms+ 10* (sq. ft.) ≈ list price | | | | | | | | | | | |--|----------|-----------|--------|--------|------------|------------|--|--|--|--| | | bedrooms | bathrooms | sq.ft. | floors | list price | sale price | | | | | | home 1 | 2 | 2 | 1800 | 2 | 200,000 | 195,000 | | | | | | home 2 | 4 | 2.5 | 2700 | 1 | 300,000 | 310,000 | home n | 5 | 3.5 | 3600 | 3 | 450,000 | 450,000 | | | | | ## **BEST FIT SUBSPACE** If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find V (equivilantly V)? $$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg\min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^T)_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^T \vec{x}_i\|_2^2 \quad \text{ard} \quad \text{orthonormal V} \|\mathbf{X}_i - \mathbf{V} \mathbf{V}^T \vec{x}_i\|_2^2 \text{orthonorm$$ d-dimensional space Projection only reduces data point lengths and distances. Want to minimize this reduction. How does this compare to JL random projection? #### **BEST FIT SUBSPACE** **V** minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by: $$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\mathbf{V}\mathbf{V}^T\vec{x}_i\|_2^2 \quad \underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2 \|\mathbf{V}^T\vec{x}_i\|_$$ Columns of **V** are 'directions of greatest variance' in the data. $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$. ## SOLUTION VIA EIGENDECOMPOSITION **V** minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by: $$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \| \mathbf{X} \mathbf{V} \|_F^2 = \sum_{i=1}^n \| \mathbf{V}^T \vec{x}_i \|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2 = \sum_{j=1}^k \| \mathbf{X} \vec{v}_j \|_2^2$$ Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily. $$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \| \mathbf{X} \vec{v} \|_2^2 \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$ $$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$ $\vec{\mathbf{V}}_k = \underset{\vec{\mathbf{v}} \text{ with } ||\mathbf{v}||_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_i \rangle = 0 \ \forall j < k}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$ These are exactly the top k eigenvectors of X^TX . $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$. #### REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION **Eigenvector:** $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}). - · That is, A just 'stretches' x. - If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns. $$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{\mathbf{v}}_1 & \mathbf{A}\vec{\mathbf{v}}_2 & \cdots & \mathbf{A}\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{\mathbf{v}}_1 & \lambda_2\vec{\mathbf{v}}_2 & \cdots & \lambda\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \mathbf{VA}$$ Yields eigendecomposition: $AVV^T = A = V\Lambda V^T$. # REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION Typically order the eigenvectors in decreasing order: $\lambda_1 > \lambda_2 > ... > \lambda_d$. **Courant-Fischer Principal:** For symmetric **A**, the eigenvectors are given via the greedy optimization: $$\begin{split} \vec{v}_1 &= \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}. \\ \vec{v}_2 &= \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}. \\ & \cdots \\ \vec{v}_d &= \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0 \ \forall j < d}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}. \end{split}$$ - $\vec{\mathbf{v}}_i^T \mathbf{A} \vec{\mathbf{v}}_j = \lambda_j \cdot \vec{\mathbf{v}}_i^T \vec{\mathbf{v}}_j = \lambda_j$, the j^{th} largest eigenvalue. - The first k eigenvectors of X^TX (corresponding to the largest k eigenvalues) are exactly the directions of greatest variance in X that we use for low-rank approximation. # LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION #### LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION **Upshot:** Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing $$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$$ This is principal component analysis (PCA). How accurate is this low-rank approximation? Can understand using eigenvalues of X^TX . $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$. Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is: $$\begin{split} \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 &= \|\mathbf{X}\|_F^2 \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 \operatorname{tr}(\mathbf{V}_k^T \mathbf{X}^T \mathbf{X} \mathbf{V}_k) \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \vec{\mathbf{V}}_i^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}_i \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \lambda_i (\mathbf{X}^T \mathbf{X}) = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) \end{split}$$ • For any matrix **A**, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues). $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$. ## SPECTRUM ANALYSIS **Claim:** The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is: $$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$ $\vec{X}_1, \dots, \vec{X}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$. #### SPECTRUM ANALYSIS Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace). $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$. **Exercise:** Show that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are always positive. **Hint:** Use that $\lambda_j = \vec{v}_j^T\mathbf{X}^T\mathbf{X}\vec{v}_j$. - Many (most) datasets can be approximated via projection onto a low-dimensional subspace. - · Find this subspace via a maximization problem: $$\max_{\text{orthonormal } \mathbf{V}} \|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2.$$ - Greedy solution via eigendecomposition of X^TX . - · Columns of V are the top eigenvectors of X^TX . - Error of best low-rank approximation is determined by the tail of $\mathbf{X}^T \mathbf{X}'$ s eigenvalue spectrum. #### INTERPRETATION IN TERMS OF CORRELATION Recall: Low-rank approximation is possible when our data features are correlated | 10000* bathrooms+ 10* (sq. ft.) ≈ list price | | | | | | | | | | |--|----------|-----------|--------|--------|------------|------------|--|--|--| | | bedrooms | bathrooms | sq.ft. | floors | list price | sale price | | | | | home 1 | 2 | 2 | 1800 | 2 | 200,000 | 195,000 | | | | | home 2 | 4 | 2.5 | 2700 | 1 | 300,000 | 310,000 | home n | 5 | 3.5 | 3600 | 3 | 450,000 | 450,000 | | | | Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX . What is the covariance of C? $$C^TC = V_k^T X^T X V_k = V_k^T V \Lambda V^T V_k = \Lambda_k$$ Covariance becomes diagonal. I.e., all correlations have been removed. Maximal compression. $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$. # What is the runtime to compute an optimal low-rank approximation? - · Computing the covariance matrix X^TX requires $O(nd^2)$ time. - Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(X^TX)^{-1}$). Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$. · Will see in a few classes $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.