COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 15

Last Class: Low-Rank Approximation

- · When data lies in a k-dimensional subspace \mathcal{V} , we can perfectly embed into k dimensions using an orthonormal span $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- When data lies close to \mathcal{V} , the optimal embedding in that space is given by projecting onto that space.

$$\mathbf{XVV}^T = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\text{arg min}} \|\mathbf{X} - \mathbf{B}\|_F^2.$$

This Class: Finding $\mathcal V$ via eigendecomposition.

- How do we find the best low-dimensional subspace to approximate X?
- · PCA and its connection to eigendecomposition.

BASIC SET UP

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $X \approx X(VV^T)$. Gives the closest approximation to X with rows in \mathcal{V} .

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

DIMENSIONALITY REDUCTION AND LOW-RANK APPROXIMATION

Low-Rank Approximation: Approximate $X \approx XVV^T$.

- XVV^T is a rank-k matrix all its rows fall in V.
- · X's rows are approximately spanned by the columns of V.
- · X's columns are approximately spanned by the columns of XV.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

DUAL VIEW OF LOW-RANK APPROXIMATION

Row (data point) compression

Column (feature) compression

10000* bathrooms+ 10* (sq. ft.) ≈ list price										
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price				
home 1	2	2	1800	2	200,000	195,000				
home 2	4	2.5	2700	1	300,000	310,000				
home n	5	3.5	3600	3	450,000	450,000				

BEST FIT SUBSPACE

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg\min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^T)_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^T \vec{x}_i\|_2^2 \quad \text{ard} \quad \text{orthonormal V} \|\mathbf{X}_i - \mathbf{V} \mathbf{V}^T \vec{x}_i\|_2^2 \quad \text{orthonorm$$

d-dimensional space

Projection only reduces data point lengths and distances. Want to minimize this reduction. How does this compare to JL random projection?

BEST FIT SUBSPACE

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\mathbf{V}\mathbf{V}^T\vec{x}_i\|_2^2 \quad \underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_$$

Columns of **V** are 'directions of greatest variance' in the data.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \| \mathbf{X} \mathbf{V} \|_F^2 = \sum_{i=1}^n \| \mathbf{V}^T \vec{x}_i \|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2 = \sum_{j=1}^k \| \mathbf{X} \vec{v}_j \|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \| \mathbf{X} \vec{v} \|_2^2 \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

 $\vec{\mathbf{V}}_k = \underset{\vec{\mathbf{v}} \text{ with } ||\mathbf{v}||_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_i \rangle = 0 \ \forall j < k}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$

These are exactly the top k eigenvectors of X^TX .

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- · That is, A just 'stretches' x.
- If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{\mathbf{v}}_1 & \mathbf{A}\vec{\mathbf{v}}_2 & \cdots & \mathbf{A}\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{\mathbf{v}}_1 & \lambda_2\vec{\mathbf{v}}_2 & \cdots & \lambda\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \mathbf{VA}$$

Yields eigendecomposition: $AVV^T = A = V\Lambda V^T$.

REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Typically order the eigenvectors in decreasing order: $\lambda_1 > \lambda_2 > ... > \lambda_d$.

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\begin{split} \vec{v}_1 &= \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}. \\ \vec{v}_2 &= \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}. \\ & \cdots \\ \vec{v}_d &= \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0 \ \forall j < d}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}. \end{split}$$

- $\vec{\mathbf{v}}_i^T \mathbf{A} \vec{\mathbf{v}}_j = \lambda_j \cdot \vec{\mathbf{v}}_i^T \vec{\mathbf{v}}_j = \lambda_j$, the j^{th} largest eigenvalue.
- The first k eigenvectors of X^TX (corresponding to the largest k eigenvalues) are exactly the directions of greatest variance in X that we use for low-rank approximation.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand using eigenvalues of X^TX .

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{split} \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 &= \|\mathbf{X}\|_F^2 \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 \operatorname{tr}(\mathbf{V}_k^T \mathbf{X}^T \mathbf{X} \mathbf{V}_k) \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \vec{\mathbf{V}}_i^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}_i \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \lambda_i (\mathbf{X}^T \mathbf{X}) = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) \end{split}$$

• For any matrix **A**, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

SPECTRUM ANALYSIS

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

 $\vec{X}_1, \dots, \vec{X}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^\mathsf{T}\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Exercise: Show that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are always positive. **Hint:** Use that $\lambda_j = \vec{v}_j^T\mathbf{X}^T\mathbf{X}\vec{v}_j$.

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- · Find this subspace via a maximization problem:

$$\max_{\text{orthonormal } \mathbf{V}} \|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2.$$

- Greedy solution via eigendecomposition of X^TX .
- · Columns of V are the top eigenvectors of X^TX .
- Error of best low-rank approximation is determined by the tail of $\mathbf{X}^T \mathbf{X}'$ s eigenvalue spectrum.

INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features are correlated

10000* bathrooms+ 10* (sq. ft.) ≈ list price									
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price			
home 1	2	2	1800	2	200,000	195,000			
home 2	4	2.5	2700	1	300,000	310,000			
home n	5	3.5	3600	3	450,000	450,000			

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

What is the covariance of C?
$$C^TC = V_k^T X^T X V_k = V_k^T V \Lambda V^T V_k = \Lambda_k$$

Covariance becomes diagonal. I.e., all correlations have been removed. Maximal compression.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

What is the runtime to compute an optimal low-rank approximation?

- · Computing the covariance matrix X^TX requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(X^TX)^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$.

· Will see in a few classes

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.