COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 15

Last Class: Low-Rank Approximation

- When data lies in a k-dimensional subspace \mathcal{V} , we can perfectly embed into k dimensions using an orthonormal span $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- When data lies close to \mathcal{V} , the optimal embedding in that space is given by projecting onto that space.

1

Last Class: Low-Rank Approximation

- · When data lies in a k-dimensional subspace \mathcal{V} , we can perfectly embed into k dimensions using an orthonormal span $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- When data lies close to \mathcal{V} , the optimal embedding in that space is given by projecting onto that space.

$$\mathbf{XVV}^T = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\text{arg min}} \|\mathbf{X} - \mathbf{B}\|_F^2.$$

This Class: Finding $\mathcal V$ via eigendecomposition.

- How do we find the best low-dimensional subspace to approximate X?
- · PCA and its connection to eigendecomposition.

BASIC SET UP

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $\mathbf{X} \approx \left[\mathbf{X} (\mathbf{W}^T) \right]$ Gives the closest approximation to \mathbf{X} with rows in \mathcal{V} .

BASIC SET UP

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $X \approx X(VV^T)$. Gives the closest approximation to X with rows in V.

DIMENSIONALITY REDUCTION AND LOW-RANK APPROXIMATION

Low-Rank Approximation: Approximate $X \approx XVV^T$.

• XVV^T is a rank-k matrix – all its rows fall in V.

 $\frac{1}{2}$ X's rows are approximately spanned by the columns of V.

√ X's columns are approximately spanned by the columns of XV.

DUAL VIEW OF LOW-RANK APPROXIMATION

Row (data point) compression

Column (feature) compression

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (equivilantly \mathbf{V})?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (equivilantly V)?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (equivilantly \mathbf{V})?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (equivilantly \mathbf{V})?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (equivilantly \mathbf{V})?

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times h}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}\mathbf{V}^{\mathsf{T}}\vec{\mathbf{x}}_{i}\|_{2}^{2}$$
 d-dimensional space

Projection only reduces data point lengths and distances. Want to minimize this reduction.

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (equivilantly \mathbf{V})?

Projection only reduces data point lengths and distances. Want to minimize this reduction. How does this compare to JL random projection?

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times h}}{\arg \max} \|\mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_F^2 = \sum_{i=1}^n \|\mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_i\|_2^2}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max}\ \underline{\|\mathbf{X}\mathbf{V}\|_F^2} = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\underline{\mathbf{V}}^T \vec{\mathbf{x}}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{\mathbf{v}}_j, \vec{\mathbf{x}}_i \rangle^2 \\ \left(\bigvee_{1}^T \times_{\mathbf{i}} \right)^2 + \left(\bigvee_{1}^T \times_{\mathbf{i}} \right)^2 + \cdot \left(\bigvee_{k}^T \times_{\mathbf{i}} \right)^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of **V** are 'directions of greatest variance' in the data.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{XV}\|_F^2 = \sum_{j=1}^n \|\mathbf{V}^T \vec{\mathbf{X}}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{\mathbf{V}}_j, \vec{\mathbf{X}}_i \rangle^2$$

Columns of ${\bf V}$ are 'directions of greatest variance' in the data.

√=3 K=2

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of ${\bf V}$ are 'directions of greatest variance' in the data.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{\mathbf{X}}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{\mathbf{V}}_j, \vec{\mathbf{X}}_i \rangle^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

minimizing
$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$$
 is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{X}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{V}_j, \vec{X}_i \rangle^2 = \sum_{j=1}^k \|\mathbf{X}\vec{V}_j\|_2^2$$

V minimizing
$$\|\mathbf{X} - \mathbf{X}\mathbf{V}^{\mathsf{T}}\|_{\mathsf{F}}^2$$
 is given by:
$$\|\mathbf{X} - \mathbf{X}\mathbf{V}^{\mathsf{T}}\|_{\mathsf{F}}^2 = \|\mathbf{X}\mathbf{V}^{\mathsf{T}}\|_{\mathsf{F}}^2$$

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \| \mathbf{XV} \|_F^2 = \sum_{i=1}^n \| \mathbf{V}^T \vec{x}_i \|_2^2 = \sum_{j=1}^{\infty} \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2 = \sum_{j=1}^k \| \mathbf{X} \vec{v}_j \|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$V_1$$
... V_k integral $\vec{V}_1 = \underset{\vec{v} \text{ with } ||v||_2 = 1}{\text{arg max}} \|\mathbf{X}\vec{v}\|_2^2 = \mathbf{V}^T \mathbf{X}^T \mathbf{X} \mathbf{V}$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \|_F^2 = \sum_{i=1}^n \| \mathbf{V}^T \vec{x}_i \|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2 = \sum_{j=1}^k \| \mathbf{X} \vec{v}_j \|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{\mathbf{v}}_1 = \underset{\vec{\mathbf{v}} \text{ with } ||\mathbf{v}||_2 = 1}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \|_F^2 = \sum_{i=1}^n \| \mathbf{V}^T \vec{x}_i \|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2 = \sum_{j=1}^k \| \mathbf{X} \vec{v}_j \|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{\mathbf{v}}_1 = \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$$

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \|\mathbf{XV}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2 = \sum_{j=1}^k \|\mathbf{X} \vec{v}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\qquad \qquad \vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{\mathbf{v}}_2 = \underset{\vec{\mathbf{v}} \text{ with } ||\mathbf{v}||_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_1 \rangle = 0}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$$

$$|_2=1, \langle v,v_1\rangle=0$$

$$\vec{\mathbf{v}}_k = \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_i \rangle = 0 \ \forall j < k}{\arg \max} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2 = \sum_{j=1}^k \|\mathbf{X} \vec{v}_j\|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\arg \max} \vec{v}^T \underline{\mathbf{X}}^T \mathbf{X} \vec{v}.$$

$$\cdots$$

$$\vec{v}_k = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

These are exactly the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$.

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \lambda \begin{bmatrix} x \end{bmatrix}$$

Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

That is, A just 'stretches' x.

- · That is, **A** just 'stretches' *x*.
- If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

- · That is, A just 'stretches' x.
- If **A** is symmetric, can find *d* orthonormal eigenvectors V_1, \dots, \vec{V}_d . Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

- That is, A just 'stretches' x.
- If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{\mathbf{v}}_1 & \mathbf{A}\vec{\mathbf{v}}_2 & \cdots & \mathbf{A}\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{\mathbf{v}}_1 & \lambda_2\vec{\mathbf{v}}_2 & \cdots & \lambda_l\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix}$$

- That is, A just 'stretches' x.
- If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{\mathbf{v}}_1 & \mathbf{A}\vec{\mathbf{v}}_2 & \cdots & \mathbf{A}\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_1 & \mathbf{v}_2 \vec{\mathbf{v}}_2 & \cdots & \mathbf{v}\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \underbrace{\mathbf{VA}}_{\mathbf{v}_1 \cdots \mathbf{v}_d} \underbrace{\mathbf{v}_1 \cdots \mathbf{v}_d}_{\mathbf{v}_1 \cdots \mathbf{$$

Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\underline{\mathbf{AV}} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{\mathbf{v}}_1 & \mathbf{A}\vec{\mathbf{v}}_2 & \cdots & \mathbf{A}\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{\mathbf{v}}_1 & \lambda_2\vec{\mathbf{v}}_2 & \cdots & \lambda\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \underline{\mathbf{VA}}$$

Yields eigendecomposition: $AVV^T = A = V\Lambda V^T$.

Typically order the eigenvectors in decreasing order:

$$\underline{\lambda_1} \ge \underline{\lambda_2} \ge \ldots \ge \underline{\lambda_d}.$$

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\vec{V}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}.$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}.$$

$$\vec{V}_d = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{A} \vec{v}.$$

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\vec{\mathbf{v}}_1 = \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1}{\arg \max} \frac{\vec{\mathbf{v}}^T \mathbf{A} \vec{\mathbf{v}}.}{\vec{\mathbf{v}}^T \mathbf{A} \vec{\mathbf{v}}.}$$

$$\vec{\mathbf{v}}_2 = \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_1 \rangle = 0}{\arg \max} \vec{\mathbf{v}}^T \mathbf{A} \vec{\mathbf{v}}.$$

$$\vec{\mathbf{v}}_d = \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_1 \rangle = 0 \ \forall j < d}{\arg \max} \vec{\mathbf{v}}^T \mathbf{A} \vec{\mathbf{v}}.$$

$$\vec{\mathbf{v}}_j^T \mathbf{A} \vec{\mathbf{v}}_j = \lambda_j \cdot \vec{\mathbf{v}}_j^T \vec{\mathbf{v}}_j = \lambda_j, \text{ the } j^{th} \text{ largest eigenvalue.}$$

COURANT-FISCHER PRINCIPAL

Singular value decomption (SVD)

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via the greedy optimization:

$$\vec{V}_1 = \underset{\vec{v} \text{ with } ||v||_2 = 1}{\arg\max} \vec{V}^T A \vec{v}.$$

$$\vec{V}_1 = \underset{\vec{v} \text{ with } ||v||_2 = 1}{\arg\max} \vec{V}^T A \vec{v}.$$

$$\vec{V}_1 = \underset{\vec{v} \text{ with } ||v||_2 = 1}{\arg\max} \vec{V}^T A \vec{v}.$$

$$\vec{V}^T A \vec{v}.$$

$$\vec{V}_d = \underset{\vec{v} \text{ with } ||v||_2 = 1, \ \langle \vec{v}, \vec{v}_i \rangle = 0}{\arg\max} \vec{V}^T A \vec{v}.$$

$$\vec{V}^T A \vec{v}_j = \lambda_j \cdot \vec{V}_j^T \vec{v}_j = \lambda_j, \text{ the } j^{th} \text{ largest eigenvalue.}$$

$$\vec{V}^T A \vec{v}_j = \lambda_j \cdot \vec{V}_j^T \vec{v}_j = \lambda_j, \text{ the } j^{th} \text{ largest eigenvalue.}$$

$$\vec{V}^T A \vec{v}_j = \lambda_j \cdot \vec{V}_j^T \vec{v}_j = \lambda_j, \text{ the } j^{th} \text{ largest eigenvalue.}$$

$$\vec{V}^T A \vec{v}_j = \lambda_j \cdot \vec{V}_j^T \vec{v}_j = \lambda_j, \text{ the } j^{th} \text{ largest eigenvalue.}$$

$$\vec{V}^T A \vec{v}_j = \lambda_j \cdot \vec{V}_j^T \vec{v}_j = \lambda_j, \text{ the } j^{th} \text{ largest eigenvalue.}$$

$$\vec{V}^T A \vec{v}_j = \lambda_j \cdot \vec{V}_j^T \vec{v}_j = \lambda_j, \text{ the } j^{th} \text{ largest eigenvalue.}$$

eigenvalues) are exactly the directions of greatest variance in X

that we use for low-rank approximation.

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{R} \mathbf{V}_{R}^{T}\|_{F}^{2},$$

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation?

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand using eigenvalues of $\mathbf{X}^T \mathbf{X}$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ (the top k principal components). Approximation error is: $\mathbf{V}_{|\mathbf{L}} = \mathbf{V}_{|\mathbf{L}} + \mathbf{V}_{|\mathbf{L}$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\underbrace{\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T}_{\mathbf{K}}\|_F^2$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X} \mathbf{V}_{k}\|_{F}^{2}$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ (the top k dot product principal components). Approximation error is: $\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}_k\|_F^2$ $\|\mathbf{A}\|_F^2$ $\|\mathbf{A}\|_F^2$ $\|\mathbf{A}\|_F^2$

$$+ (A^{T}A) = \sum_{i=1}^{2} (A^{T}A)_{i,i} \cdot \sum_{i=1}^{2} \|a_{i}\|_{L^{1}}^{L}$$

$$(A^{T}A)_{i,i} \cdot (A^{T}A)_{i,i} \cdot (A^{T}A)_{i,i$$

• For any matrix \mathbf{A} , $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T \mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\underline{\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T}\|_F^2 = \underbrace{\mathsf{tr}(\mathbf{X}^T \mathbf{X})}_{} - \underbrace{\mathsf{tr}(\mathbf{V}_k^T \mathbf{X}^T \mathbf{X} \mathbf{V}_k)}_{}$$

• For any matrix **A**, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \text{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{aligned} \|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\|_{F}^{2} &= \underbrace{\operatorname{tr}(\mathbf{X}^{T} \mathbf{X})}_{d} - \operatorname{tr}(\mathbf{V}_{k}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{V}_{k}) \\ &= \underbrace{\sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{T} \mathbf{X})}_{i} - \underbrace{\sum_{i=1}^{k} \vec{v}_{i}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v}_{i}}_{i} \end{aligned}$$

• For any matrix \mathbf{A} , $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{aligned} \|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} \|_{F}^{2} &= \operatorname{tr}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \operatorname{tr}(\mathbf{V}_{k}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{V}_{k}) \\ &= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \sum_{i=1}^{k} \overrightarrow{\mathbf{V}}_{i}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \overrightarrow{\mathbf{V}}_{i} \\ &= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \sum_{i=1}^{k} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \end{aligned}$$

• For any matrix **A**, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \text{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\underbrace{\|\mathbf{X} - \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{T}\|_{F}^{2}}_{\mathbf{X}^{T}} = \operatorname{tr}(\mathbf{X}^{T}\mathbf{X}) - \operatorname{tr}(\mathbf{V}_{k}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{V}_{k})$$

$$= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{T}\mathbf{X}) - \sum_{i=1}^{k} \vec{\mathbf{V}}_{i}^{T}\mathbf{X}^{T}\mathbf{X}\vec{\mathbf{V}}_{i}$$

$$= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{T}\mathbf{X}) - \sum_{i=1}^{k} \lambda_{i}(\mathbf{X}^{T}\mathbf{X}) = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{T}\mathbf{X})$$

• For any matrix **A**, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \text{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\underline{\mathbf{X} - \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}}}\|_{F}^{2} = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

error of optimal low rank approximation

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X},\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$

pectron= all eigendes

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Eigenvalue Rank

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

Exercise: Show that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are always positive. **Hint:** Use that $\lambda_j = \vec{v}_i^T\mathbf{X}^T\mathbf{X}\vec{v}_j$.

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- · Find this subspace via a maximization problem:

$$\max_{\text{orthonormal } \mathbf{V}} \|\mathbf{X}\mathbf{V}\|_F^2.$$

- Greedy solution via eigendecomposition of X^TX .
- · Columns of V are the top eigenvectors of X^TX .
- Error of best low-rank approximation is determined by the tail of $\mathbf{X}^T \mathbf{X}'$ s eigenvalue spectrum.

Recall: Low-rank approximation is possible when our data features are correlated

10000 · DatillOoms+ 10 · (sq. it.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					•	
home n	5	3.5	3600	3	450,000	450,000

Recall: Low-rank approximation is possible when our data features are correlated

	10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2700	1	300,000	310,000	
home n	5	3.5	3600	3	450,000	450,000	

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

Recall: Low-rank approximation is possible when our data features are correlated

	10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		
home 1	2	2	1800	2	200,000	195,000		
home 2	4	2.5	2700	1	300,000	310,000		
					-			
home n	5	3.5	3600	3	450,000	450,000		

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

What is the covariance of C?

Recall: Low-rank approximation is possible when our data features are correlated

	10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		
home 1	2	2	1800	2	200,000	195,000		
home 2	4	2.5	2700	1	300,000	310,000		
					-			
home n	5	3.5	3600	3	450,000	450,000		

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

What is the covariance of \mathbf{C} ? $\mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{V}_{k}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V}_{k}$

Recall: Low-rank approximation is possible when our data features are correlated

10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2700	1	300,000	310,000	
						•	
		•			•		
home n	5	3.5	3600	3	450,000	450,000	

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

What is the covariance of \mathbf{C} ? $\mathbf{C}^T\mathbf{C} = \mathbf{V}_k^T\mathbf{X}^T\mathbf{X}\mathbf{V}_k = \mathbf{V}_k^T\mathbf{V}\mathbf{\Lambda}\mathbf{V}^T\mathbf{V}_k$

Recall: Low-rank approximation is possible when our data features are correlated

	10000* bathrooms+ 10* (sq. tt.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2700	1	300,000	310,000	
_							
-							
•							
•		•	•	•	•	•	
home n	5	3.5	3600	3	450,000	450,000	

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

What is the covariance of C?
$$C^TC = V_k^T X^T X V_k = V_k^T V \Lambda V^T V_k = \Lambda_k$$

Recall: Low-rank approximation is possible when our data features are correlated

	10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		
home 1	2	2	1800	2	200,000	195,000		
home 2	4	2.5	2700	1	300,000	310,000		
		•			•			
home n	5	3.5	3600	3	450,000	450,000		

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

What is the covariance of C? $C^TC = V_k^T X^T X V_k = V_k^T V \Lambda V^T V_k = \Lambda_k$

Covariance becomes diagonal. I.e., all correlations have been removed. Maximal compression.

ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank approximation?

ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank approximation?

· Computing the covariance matrix X^TX requires $O(nd^2)$ time.

ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank approximation?

- · Computing the covariance matrix X^TX requires $O(nd^2)$ time.
- · Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(\mathbf{X}^T\mathbf{X})^{-1}$).

What is the runtime to compute an optimal low-rank approximation?

- · Computing the covariance matrix X^TX requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(X^TX)^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$.

· Will see in a few classes