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SUMMARY

Last Class: Low-Rank Approximation

- When data lies in a k-dimensional subspace V, we can
perfectly embed into k dlmen5|ons using an orthonormal
span V e RIxk, &=y Xy

- When data lies close to V, the optimal embedding in that
space is given by projecting onto that space.
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SUMMARY

Last Class: Low-Rank Approximation

- When data lies in a k-dimensional subspace V, we can
perfectly embed into k dimensions using an orthonormal
span V € RIxk.

- When data lies close to V, the optimal embedding in that
space is given by projecting onto that space.

XW' = argmin |X—B|2
B with rows in V
This Class: Finding V via eigendecomposition.
- How do we find the best low-dimensional subspace to
approximate X?
- PCA and its connection to eigendecomposition.




BASIC SET UP

Set Up: Assume that data points X, ..., X, lie any
k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space - ‘;L:-
N[ 2
.. T
Xa

k-dim. subspace V

Let Vi, ...,V be an orthonormal basis for V and V € R9** pe the
matrix with these vectors as its columns.

- WT € R9%9 js the onto V.

© X ~|X(VW")\ Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V. 2




BASIC SET UP

Set Up: Assume that data points X;, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let Vi, ...,V be an orthonormal basis for V and V € R9** pe the
matrix with these vectors as its columns.

- W' e R s the projection matrix onto V.

© X =~ X(WT). Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns ¥4, .. ., V. 2




DIMENSIONALITY REDUCTION AND LOW-RANK APPROXIMATION

Low-Rank Approximation: Approximatelzﬂvf

>< - X\J\/—Y d dimensions  k dimensions ~
N
L
n data points X XV
s VT 0 d\Ead ) s=v
N .
Mios X ><l ‘(X\/)\/, N
- XW'isa - all its rows fall in V.

1 X's rows are approximately spanned by the columns of V.

X's columns are approximately spanned by the columns of XV.

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.




DUAL VIEW OF LOW-RANK APPROXIMATION
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Column (feature) compression
10000* 10* =~
Row (data point) compression floors sale price
home 1 2 2 195,000
home 2 a4 1 310,000
home n 5 3 450,000




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?
eHE VA ¥

X1,...,% € RY: data points, X € R"*%: data matrix, v1, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)? [g [\M] ["|]
argmin k@ XWIE = 3706, - 0Ty )2 = 31 - WR

orthonormal VERA ,‘J/‘W _1\1/\/\/'/
4 d-dimensional space \\\LT - )<l \/\/ “2.

Xi * cO(\W\v»

) k-dim. subspace V
Xy . P T =
’Q\.T K\ == \/‘G\I\)
: T
Xaq
X1,...,% € RY: data points, X € R"*%: data matrix, v1, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. .




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as

XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

argmin X2 — [IXW|}2 =

orthonormal VERI Xk
Qv

7k \‘Q‘L v d-dimensional space
A\

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , %,.
5




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

n
argmin [IXF — [XWTI =001 — IWTX3
orthonormal VERIXk = —_— i

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , %,.




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

n
argmax _[[XWT|[ =" " WK}
orthonormal VERIxk i

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , %,.




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?
n
argmax_[IXW'[[z = > [WK|3

orthonormal VERIxk i

d-dimensional space

k-dim. subspace V

Projection only reduces data point lengths and distances. Want to
minimize this reduction.



BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

T, _
How do we find V (equivilantly V)? \l V= I

n
argmax X2 =37 WK
orthonormal VERI Xk

vivst d-dimensional space - | ,\/\/TX\ ” é ” )<\ ”

CIEEE (1) Il

k-dim. subspace V

Projection only reduces data point lengths and distances. Want to
minimize this reduction. How does this compare to JL random
projection?



BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

argmax IXVVT|[2 = Z ||VVTX:H2

orthonormal VERIx* i

ﬂ Vil
X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

/r
V minimizing X — XWT|[2 is given by: (V']

argmax  |XV||; = ZHV Xill5

orthonormal VERI*k —— N
X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

argmax [|XV[[f = va ||2—ZZ

orthonormal VERAI* j= 1 i—1
\/\ - \/L (\/) >(I> (\/‘L K() -(VLX)
X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

kR n
argmax_ x|} = va %3 =03 (5.%)?

orthonormal VER?* j=1 =1

Columns of V are ‘directions of greatest variance’ in the data.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

argmax  |XV||; = ZHV Xill5 =

orthonormal VERY %k

N - Vie
X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

kR n
argmax_ x|} = va %3 =03 (5.%)?

orthonormal VER?* j=1 =1

Columns of V are ‘directions of greatest variance’ in the data.

X1,...,% € RY: data points, X € R"*%: data matrix, ¥4, ..., v, € R orthogo-
nal basis for subspace V. V e R9>*: matrix with columns V4, .. . , V.




SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:

_

n kR n
argmax_ V=7 VR[S = 0 D7 (7 %)
_/JaJALQR-L—/ i=1

orthonor j=1 i=1

Xi,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , V. 7




SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by: \omAs
owS a
n kR n )
argmax XVIE = Y IVEIE= DY @K = S
orthonormal VeR! X/ ,\=_1/ j=1 i=1 P‘\_/
Xi,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-

nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , V. 7




SOLUTION VIA EIGENDECOMPOSITION

N = Tl
B Wll = NVl

n
argmax [XVIE = DO IVEIE = 30D % = 3 10
i=1 j=1

d — -
orthonormal VERd* j=1 i=1

V minimizing ||X — XW'||2 is given by:

Surprisingly, can find the columns of V, v, ...,V greedily.
: T,T
N .-« Ve NP V= argmax |XV3. =V X Xy

7 with [|v],=1

Xi,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , V. 7




SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
n kR n ,;
argmax  XV[E= Y VEIE=D) .57 =D X
orthonormal VERIx* i =1 i=1 =1
Surprisingly, can find the columns of V, V4, ...,V greedily.

Vi = argmax VX'XV.
7 with [[v]J,=1

Xi,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , V. 7




SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
n kR n )
argmax  XV[2=) VX3 = Vi, 5y = > [IXvl;
orthonormal VER?*k ’ ; e ;; 7 z\:\’\r\/
Surprisingly, can find the columns of V, V4, ...,V greedily.

Vi = argmax VX'XV.
7 with [[v]J,=1

v, = arg max VIXTXV.
Vwith ||v]|,=1, (V,Vh)=0

Xi,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , V. 7




SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:

n R n k
argmax  [XVIE = STIVRIE = 30D oA = Dok
l”/’iv;,\(\J i=1 =1 =1 RN )Jlm

Surprisingly, can find the columns of V, V4, ...,V greedily.
{ Vi = argmax VX'XV.

7 with [|v]|,=1
= =TvTv=
V) = arg max VX' XV.

Vwith ||v]|,=1, (V,ih)=0

Vi = arg max VIXTXV.
Fwith [[V]l=1, (7,7)=0 Vj<k™

Xi,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , V. 7




SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
n kR n )
argmax  XV[E= Y VEIE=D) .57 =D X
orthonormal VERIx* i =1 i=1 =1
Surprisingly, can find the columns of V, V4, ...,V greedily.
Vi = argmax VX'XV.

gwith [v],=1——"

v, = arg max VIXTXV.
Vwith ||v]|,=1, (V,ih)=0

Vi = arg max VIXTXV.
Fwith [[v][l,=1, (7,7)=0 Vj<k

( These are exactly the top k eigenvectors of X'X.

Xi,...,% € RY: data points, X € R"%%: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V e R9>k: matrix with columns ¥, .. . , V. 7




REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if
_AX = XX for some scalar X (the eigenvalue corresponding to X).

—_—

D\ )= A



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if

AX = XX for some scalar A (the eigenvalue corresponding to X)

- That is, A just ‘stretches’ x.



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar X (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,...,Vq. Let V e R9%Y have these vectors as columns.



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if

AX = XX for some scalar A (the eigenvalue corresponding to X)

- That is, A just ‘stretches’ x.

- If Alis symmetric, can find d orthonormal eigenvectors .. Vg

Vi,...,Vq. Let V e R9%Y have these vectors as columns.
Jd
A0 I N B
AV = |AV, AV, --- AV
L

AV,



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar X (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors

Vi,...,Vq. Let V e R9%Y have these vectors as columns.
[ N R | | I
AV = A\71 A\72 A\_/d - )\1 \71 )\2\72 )\d\7d



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar X (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors

Vi,...,Vq. Let V e R9%Y have these vectors as columns.
e e NN
[ N R | | I
AV = (A, AV, - AVg| = AW Aoy o AVg| = VA

| .
Av < E--V-UJ['--. J



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar X (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors

Vi,...,Vq. Let V e R9%Y have these vectors as columns.
[ N R | | I
AV = AV, AV, - AVg| = AT Al e AV| = VA

Yields eigendecomposition: AW = A = VAV’

—




REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

dxd orthonormal diagonal orthonormal

A2

Typically order the eigenvectors in decreasing order:
M= > A



COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:

V; = argmax V' AV.
v with ||v||,=1

v, = arg max VTAV.
Pwith V=1, (7,7)=0

Vg = arg max VIAV.
P with [[v]|,=1, (7,7)=0 Vj<d

10



COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:

V; = argmax V' AV.

v with ||v||,=1 —

v, = arg max VTAV.
Pwith V=1, (7,7)=0

Vg = arg max VIAV.
Twith [[vl=1, (7,7)=0 vj<d
AV)
A
- VA =, VIV; = ), the j" largest eigenvalue.
~—

T Y-

NI

10



COURANT-FISCHER PRINCIPAL

g\ q 5\)\ o \IG\)\AQ &}w@,‘w\’ QS\/—DB

Courant-Fischer Principal: For symmetric A, the eigenvectors are

given via the greedy optimization: -
Vi = argmax V'AV. PN A '
Vv with =1
Vi Vie i - 0TS e
o Shapa N
SPM\ Sv 5‘70&/ Vo = arg max V' AV.
with [|[v],=1, (7,7)=0 .
\ ) bd' e oo VP *
fop b ugnvInS o | AN
T, V= arg max VAV N4 2\
© 7 with [|v][l,=1, (V,7)=0 Vj<d
© VIAV; = ;- VTV, = \;, the j largest eigenvalue. L
- The first k eigenvectors of X'X (corresponding to the largest R
eigenvalues) are exactly the directions of greatest variance in X
10

that we use for low-rank approximation.



LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

MmN
N

dxd

X -

Hmw do Ahd V¢

XX

Ui B,

VT

& A b o N o~ o

d-dimensional space

vy V2

k-dim. subspace V



LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting Vi, have columns Vi, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the

orthogonal basis minimizing —d
db@ﬂ

X — XV, VE[IZ,

Xi,...,% € RY data points, X € R"%9: data matrix, v,...,V, € R top
eigenvectors of XX, V, € R9Xk: matrix with columns ¥, .. . , 7.




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting Vi, have columns Vi, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

X — XV, VE[IZ,

This is principal component analysis (PCA).

Xi,...,% € RY data points, X € R"%9: data matrix, v,...,V, € R top
eigenvectors of XX, V, € R9Xk: matrix with columns ¥, .. . , 7.




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting Vi, have columns Vi, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

X — XV, VE[IZ,

This is principal component analysis (PCA).

How accurate is this low-rank approximation?

Xi,...,% € RY data points, X € R"%9: data matrix, v,...,V, € R top
eigenvectors of XX, V, € R9Xk: matrix with columns ¥, .. . , 7.




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting Vi, have columns Vi, ...,V corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

X — XV, VE[IZ,

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.

Xi,...,% € RY data points, X € R"%9: data matrix, v,...,V, € R top
eigenvectors of XX, V, € R9Xk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let V4,...,V, be the top k eigenvectors of X'X (the top k _
principal components). Approximation error is: \/\L AT

X — XV, VE|[?

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let V4,...,V, be the top k eigenvectors of X'X (the top R
principal components). Approximation error is:
IX — XVRVE|[7 = [IX[|F — [IXV,VE]I?

NS
AKX .

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let V4,...,V, be the top k eigenvectors of X'X (the top R
principal components). Approximation error is:

IX = XVRVEIE = [IXIIE — [IXV |7

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let V4,...,V, be the top k eigenvectors of X'X (the top R 4«1 P’“
principal components). Approximation error is: C ((\j[\l 4 \g

X — XVRVEIIE = X112 — XV WAlg 4R
Ay \%
_ T - 2 faill
ﬁ INECSEFAGL I
R A
(H H) <0k)l o
('D\H)l)\ <.0k\ |ﬁ\.\%
- For any matrle \AH# =% [|dj||2 = tr(ATA) (sum of Nooille

diaga = sum eigenvalues).

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let V4,...,V, be the top k eigenvectors of X'X (the top R
principal components). Approximation error is:

X = XVRVE[17 = tr(XTX) — tr(VIXTXVy)

—_————

- For any matrix A, A2 = 320, ||di[12 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let V4,...,V, be the top k eigenvectors of X'X (the top R
principal components). Approximation error is:

W
X — XV, V|12 = tr(X"X) — tr(VIXTXV}) WTG({K\)&M

d k
= > A(XTX) = > VXX,

- For any matrix A, [|A|lf = SS9 11d;|2 = tr(ATA) (sum of
diagonal entries = sum eigenvalues). > X (AT

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let V4,...,V, be the top k eigenvectors of X'X (the top R
principal components). Approximation error is:

X = XVRVE[12 = tr(XTX) — tr(VEXTXVy)

d k
=) AN(XX) =) VXXV, \ o
; ; —~ JxI®v; é"(MVD ANAY
d k I\ =Nt
= >N = 3 N(X7X)
=1 ST A=l
- For any matrix A, A2 = 320, ||di[12 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Let V4,...,V, be the top k eigenvectors of X'X (the top R
principal components). Approximation error is:

X = XV, VE|2 = tr(XTX) tr(VEXTXVy,)
kR
= Z A(XTX) — Z VXXV,
i=1 i
d
= > X(X'X) - Z A(XTX) = Z i(XTX)
=1

j=k-+1

- For any matrix A, A2 = 320, ||di[12 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
T2 T
IX = XVAVIlIE = > A(X'X)
— .
i=k+1
Xi,...,%X € RY: data points, X € R"%9: data matrix, v,...,V, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , V.

14



SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k

approximation (projecting onto the top k eigenvectors of X'X is:

d
T2 T
IX = XVVE[E = > Ai(X7X)
iI=kR+1
dxd
\ ll \
Az
A
XX Uy Uy B )L A VT
e |
N/ A
error of optimal low rank
approximation
X,...,% € RY data points, X € R">9: data matrix, v4,...,V, € R% top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , V.

14



SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d ’\‘/\N\/)’
X — XV V]|? = Ai(XTX
X XUEIE= 3 000 Wu&m@

784 dimensional vectors

- elgendecomposmon
o

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).
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Plotting the spectrum of the covariance matrix X’X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
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SPECTRUM ANALYSIS

784 dimensional vectors
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Exercise: Show that the eigenvalues of X'X are always positive.
Hint: Use that \; = VXXV,
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SUMMARY

- Many (most) datasets can be approximated via projection
onto a low-dimensional subspace.

- Find this subspace via a maximization problem:

max  ||XV||Z.
orthonormal V

- Greedy solution via eigendecomposition of X'X.

- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation is determined by the
tail of X'X's eigenvalue spectrum.
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S

floors sale price

home 1 2 2 195,000
home 2 a4 1 310,000

home n 5 3 450,000

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S

floors| sale price
home 1 2 2 195,000
home 2 a4 1 310,000
home n 5 3 450,000

Our compressed dataset is C = XV, where the columns of V, are the
top k eigenvectors of X'X.

C"C = VIXTXV), = VIVAV'V,, = A,
l.e., all correlations have been
removed. Maximal compression.

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.
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ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank
approximation?

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?%k: matrix with columns ¥, . . ., V.
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ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank
approximation?

- Computing the covariance matrix X'X requires O(nd”) time.
- Computing its full eigendecomposition to obtain Vi, ...,V
requires O(d”) time (similar to the inverse (XX)~7").

Many faster iterative and randomized methods. Runtime is
roughly to output just to top k eigenvectors vi, ..., V.

- Will see in a few classes
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