
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 14

0



logistics

Move Online:

• Check out Piazza post for details about moving online.
• Lectures will be streamed and recorded. Feel free to ask
questions using audio or by typing into chat. Mute when not
talking.

• Feel free to turn on video, although it will be automatically
off at the beginning of each lecture.

• Office hours will be over Zoom, after class on Tuesdays.
Different Zoom link.

• Message me if you want to attend office hours but can’t.
• Problem set rules will remain the same: you can submit in
groups of up to three, but do not have to.
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https://umass-amherst.zoom.us/j/177774442


logistics

Midterm:

• Midterm grades are posted in Moodle. Average was a 30/37.
• Email me if you’d like to see your graded midterm.
• I won’t release an answer key, but you can ask about
midterm solutions in office hours or on Piazza.

• If you were not happy with your performance I’m happy to
talk about it, and see if there are any adjustments we can
make to get things on track.
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last class: embedding with assumptions

Set Up: Assume that data points x⃗1, . . . , x⃗n ∈ Rd lie in some
k-dimensional subspace V of Rd.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

∥VTx⃗i − VTx⃗j∥22 = ∥⃗xi − x⃗j∥22.
Letting x̃i = VTx⃗i, we have a perfect embedding from V into Rk.
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embedding with assumptions

Main Focus of Today: Assume that data points x⃗1, . . . , x⃗n lie close to
any k-dimensional subspace V of Rd.

Letting v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns, VTx⃗i ∈ Rk is still a good
embedding for xi ∈ Rd. The key idea behind low-rank approximation
and principal component analysis (PCA).

• How do we find V and V?
• How good is the embedding? 4



low-rank factorization

Claim: x⃗1, . . . , x⃗n lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Letting v⃗1, . . . , v⃗k be an orthonormal basis for V , can write any x⃗i as:

x⃗i = V⃗ci = ci,1 · v⃗1 + ci,2 · v⃗2 + . . .+ ci,k · v⃗k.

• So v⃗1, . . . , v⃗k span the rows of X and thus rank(X) ≤ k.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 5



Claim: x⃗1, . . . , x⃗n ∈ Rd lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Every data point x⃗i (row of X) can be written as
x⃗i = V⃗ci = ci,1 · v⃗1 + . . .+ ci,k · v⃗k.

• X can be represented by (n+ d) · k parameters vs. n · d.
• The rows of X are spanned by k vectors: the columns of V =⇒ the
columns of X are spanned by k vectors: the columns of C.

x⃗1, . . . , x⃗n : data points (in Rd), V : k-dimensional subspace of Rd , v⃗1, . . . , v⃗k ∈
Rd : orthogonal basis for V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 6



low-rank factorization

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace with orthonormal
basis V ∈ Rd×k, the data matrix can be written as X = CVT.

Exercise: What is this coefficient matrix C? Hint: Use that VTV = I.

• X = CVT =⇒ XV = CVTV
• VTV = I, the identity (since V is orthonormal) =⇒ XV = C.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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projection view

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be written as

X = CVTXVVT.

• VVT is a projection matrix, which projects the rows of X (the data
points x⃗1, . . . , x⃗n onto the subspace V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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low-rank approximation

Claim: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT

Note: XVVT has rank k. It is a low-rank approximation of X.

XVVT = argmin
B with rows in V

∥X− B∥2F =
∑
i,j

(Xi,j − Bi,j)2.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 9



low-rank approximation

So Far: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT.

This is the closest approximation to X with rows in V (i.e., in the
column span of V).

• Letting (XVVT)i, (XVVT)j be the ith and jth projected data points,

∥(XVVT)i − (XVVT)j∥2 = ∥[(XV)i − (XV)j]VT∥2 = ∥[(XV)i − (XV)j]∥2.

• Can use XV ∈ Rn×k as a compressed approximate data set.

Key question is how to find the subspace V and correspondingly V.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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properties of projection matrices

Quick Exercise: Show that VVT is idempotent. I.e.,
(VVT)(VVT)⃗y = (VVT)⃗y for any y⃗ ∈ Rd.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

∥⃗y∥22 = ∥(VVT)⃗y∥22 + ∥⃗y− (VVT)⃗y∥22.
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a step back: why low-rank approximation?

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?
• The rows of X can be approximately reconstructed from a
basis of k vectors.
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dual view of low-rank approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
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best fit subspace

If x⃗1, . . . , x⃗n are close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V .

How do we find V (equivilantly V)?

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F =
∑
i,j

(Xi,j − (XVVT)i,j)2 =
n∑
i=1

∥⃗xi − VVTx⃗i∥22 argmin
orthonormal V∈Rd×k

∥X∥2F − ∥XVVT∥2F =
n∑
i=1

∥⃗xi∥22 − ∥VVTx⃗i∥22 argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
n∑
i=1

∥VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 14



best fit subspace

V minimizing ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
n∑
i=1

∥VVTx⃗i∥22 argmax
orthonormal V∈Rd×k

∥XV∥2F =
n∑
i=1

∥VTx⃗i∥22 =
k∑
j=1

n∑
i=1

⟨⃗vj, x⃗i⟩2

Columns of V are ‘directions of greatest variance’ in the data.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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summary

• Many datasets lie close to a k-dimensionsal subspace.
• Can take advantage of this to do data-dependent linear
dimensionality reduction (low-rank approximation.

• Dual view: both rows (data points) and columns (features)
are approximated spanned by a small number of vectors.

• Step 1: Find this subspace by finding the directions of
greatest variance in the data.

• Step 2: Get best approximation to the data points in this
subspace via projection matrix VVT. V ∈ Rd×k used as linear
mapping from d-dimensional to k-dimensional space.
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