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LOGISTICS

Move Online:

- Check out Piazza post for details about moving online.

- Lectures will be streamed and recorded. Feel free to ask
questions using audio or by typing into chat. Mute when not
talking.

- Feel free to turn on video, although it will be automatically
off at the beginning of each lecture.

- Office hours will be over Zoom, after class on Tuesdays.
Different Zoom link.

- Message me if you want to attend office hours but can't.

- Problem set rules will remain the same: you can submit in
groups of up to three, but do not have to.


https://umass-amherst.zoom.us/j/177774442

LOGISTICS

Midterm:

- Midterm grades are posted in Moodle. Average was a 30/37.
- Email me if you'd like to see your graded midterm.

- I won't release an answer key, but you can ask about
midterm solutions in office hours or on Piazza.

- If you were not happy with your performance I'm happy to
talk about it, and see if there are any adjustments we can
make to get things on track.



LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points X;, ..., X, € RY lie in some
k-dimensional subspace V of RY.

d-dimensional space

k-dim. subspace V

Let Vi, ..., Vi be an orthonormal basis for V and V € Rk be the
matrix with these vectors as its columns.

IVTX; = VX3 = [1% = %12

Letting X; = V'X;, we have a perfect embedding from V into R*.



EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X, ..., X, lie close to
any k-dimensional subspace V of RY.

d-dimensional space d-dimensional space

k-dim. subspace V k-dim. subspace V

Letting V4, ..., Vi, be an orthonormal basis for V and V € R¥*F be the
matrix with these vectors as its columns, V'X; € R¥ is still a good
embedding for x; € RY. The key idea behind low-rank approximation

and principal component analysis (PCA).
* How do we find V and V?
* How good is the embedding? 4



LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Letting V4, ...,V be an orthonormal basis for V, can write any X; as:

Xi=VC=Cia Vi+Co Vat...+Cip Ve

© S0 Vy,...,Vk span the rows of X and thus rank(X) < k.

d dimensions
n data points+ X

Ci,k * VkT

nal basis for subspace V. V e R9><k: matrix with columns v,

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., V, € RY: orthogo-
.y Ve 5




Claim: X;,...,X, € R? lie in a k-dimensional subspace V < the data
matrix X € R"*4

- Every data point X; (row of X) can be written as
)_(‘,'ZVE,'ZC,'J ~\71+...+C,-7,?-\7k.
k parameters

d dimensions
— ——

VT

sl — (e

n data points X C

- X can be represented by (n + d) - k parameters vs. n - d.

* The rows of X are spanned by k vectors: the columns of V = the
columns of X are spanned by k vectors: the columns of C.

X1,...,%;: data points (in R9), V: k-dimensional subspace of RY, ¥y, ...,V €
RY: orthogonal basis for V. V. R9%k: matrix with columns V4, ..., V. .




LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € RI*k the data matrix can be written as X = CV'.

k parameters

d dimensions
M ——

\Vi

n data points X C n data points X

Hint: Use that VIV = 1.

- X=CV =— Xv=cVvlv

- VIV = |, the identity (since V is orthonormal) =

[ X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo- ] 7
nal basis for <iibspace V V e RIAXR. matrix with columns v, v



PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal basis V € R¥*k, the data matrix can be written as

X = CVTXW'.

- W' is a projection matrix, which projects the rows of X (the data
points X1, ..., X, onto the subspace V.

d-dimensional space d-dimensional space d-

k-dim. subspace V k-dim. subspace V



LOW-RANK APPROXIMATION

Claim: If X;,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X~ XWW'

d-dimensional space

k-dim. subspace V

Note: XVVT has rank k. It is a low-rank approximation of X.

XWT = argmin [[X—B|}=> (X — By

B with rows in V i

X1, ...,% € RY: data points, X € R"%9: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V e R9*%*: matrix with columns V4, ..., V.




LOW-RANK APPROXIMATION

So Far: If X,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:
X & XWV'.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW7);, (XW'); be the i" and j"" projected data points,
[(XWT); = (XWT)j 2 = [[[(XV); — (XV)IVT 12 = [[(XV); = (XV),]]2-

- Can use XV € R"** as a compressed approximate data set.

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V e R9*%*: matrix with columns V4, ..., V.




PROPERTIES OF PROJECTION MATRICES

Quick Exercise: Show that W/ is idempotent. lLe,
(WH(WTy = (Why for any y € RY.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

I711Z = [IOWHIZ + 11 — (W3-

1



A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi, ...,X, € RY to lie close to a
k-dimensional subspace?
- The rows of X can be approximately reconstructed from a

basis of k vectors.
projections onto 15
784 dimensional vectors ~ dimensional space




DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X, ..

k-dimensional subspace?

* Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

home 1
home 2

home n

bedrooms| bathrooms| sq.ft.|floors| list price|sale price
2 1800 | 2 | 200,000 | 195,000

2.5 2700 | 1 300,000 | 310,000

5 3.5 3600 | 3 450,000 | 450,000

., Xn € R?to lie close to a

home 1
home 2

home n

bedrooms
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BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with

orthonormal basis V € RY** the data matrix can be approximated as

XVVT. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

n
argmin X = XWT[[F = " (Xi; — (XW);;)? = 1% — WIX[3
i=1

orthonormal VERd Xk ij

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-

nal basis for subspace V. V. € R4*k: matrix with columns ¥4, . . ., V.

ar
orthonc
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BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

n n
argmax_XWIIR =" [WKIE  argmax [XVIE = VK-
i=1

orthonormal VERIX i=1 orthonormal VERYX

Columns of V are ‘directions of greatest variance’ in the data.

nal basis for subspace V. V € RYXk: matrix with columns ¥, .. . , V.

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., v, € R%: orthogo- ]
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SUMMARY

- Many datasets lie close to a k-dimensionsal subspace.

- Can take advantage of this to do data-dependent linear
dimensionality reduction (low-rank approximation.

- Dual view: both rows (data points) and columns (features)
are approximated spanned by a small number of vectors.

- Step 1: Find this subspace by finding the directions of
greatest variance in the data.

- Step 2: Get best approximation to the data points in this
subspace via projection matrix W'. V € R9*F ysed as linear
mapping from d-dimensional to k-dimensional space.
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