COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 14

LOGISTICS

Move Online:

- Check out Piazza post for details about moving online.
- Lectures will be streamed and recorded. Feel free to ask questions using audio or by typing into chat. **Mute when not talking.**
- Feel free to turn on video, although it will be automatically off at the beginning of each lecture.
- Office hours will be over Zoom, after class on Tuesdays. Different Zoom link.
- $\cdot\,$ Message me if you want to attend office hours but can't.
- Problem set rules will remain the same: you can submit in groups of up to three, but do not have to.

Midterm:

- Midterm grades are posted in Moodle. Average was a 30/37.
- Email me if you'd like to see your graded midterm.
- I won't release an answer key, but you can ask about midterm solutions in office hours or on Piazza.
- If you were not happy with your performance I'm happy to talk about it, and see if there are any adjustments we can make to get things on track.

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ lie in some *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$\begin{bmatrix} \mathbf{v}^{\mathsf{T}} \\ \mathbf{v}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{z}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{\mathsf{T}} \vec{x}_{i} - \mathbf{v}^{\mathsf{T}} \vec{x}_{j} \|_{2}^{2} = \|\vec{x}_{i} - \vec{x}_{j}\|_{2}^{2}.$$

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ lie in some *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$\|\mathbf{V}^{\mathsf{T}}\vec{x}_{i} - \mathbf{V}^{\mathsf{T}}\vec{x}_{j}\|_{2}^{2} = \|\vec{x}_{i} - \vec{x}_{j}\|_{2}^{2}.$$

Letting $\tilde{x}_i = \mathbf{V}^{\mathsf{T}} \vec{x}_i$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^k .

Main Focus of Today: Assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Main Focus of Today: Assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Main Focus of Today: Assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Main Focus of Today: Assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

Main Focus of Today: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{Y} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \not\in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA). Why is this a reasonable assumption?

- How do we find \mathcal{V} and \mathbf{V} ?
- How good is the embedding?

Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as: $\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + c_{i,2}\cdot\vec{v}_2 + \ldots + c_{i,k}\cdot\vec{v}_k.$ d dimensions = C_{i,1 *} n data points C_{i.k} *

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + c_{i,2}\cdot\vec{v}_2 + \ldots + c_{i,k}\cdot\vec{v}_k.$$

• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus rank(**X**) $\leq k$.

Claim: $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Every data point \vec{x}_i (row of **X**) can be written as $\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k.$

Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• **X** can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.

Claim: $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \implies$ the columns of X are spanned by k vectors: the columns of C.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^T V = I$.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix C? Hint: Use that $V^T V = I$. $X = CV^T \implies XV = CV/V$

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^T V = I$.

$$\cdot \ \mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}} \implies \mathbf{X} \mathbf{V} = \mathbf{C} \mathbf{V}^{\mathsf{T}} \mathbf{V}$$

• $\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$, the identity (since \mathbf{V} is orthonormal)

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix **C**? Hint: Use that $V^T V = I$. T $X = CV^T \implies XV = CV^T$

• $V^T V = I$, the identity (since V is orthonormal) $\implies XV = C$.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix C? Hint: Use that $V^T V = I$.

$$\cdot X = CV^T \implies XV = CV^TV$$

• $V^T V = I$, the identity (since V is orthonormal) $\implies XV = C$.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = CV^T$$
. = $X_C \sqrt{1}$

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

nal basis for subspace \mathcal{V} . $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

So Far: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as: $\mathbf{X} \approx \mathbf{X} (\mathbf{V} \mathbf{V}^T) - \mathbf{P} \cdot \mathbf{\hat{g}}$ into subspace

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

So Far: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

• Letting $(\mathbf{XVV}^T)_i$, $(\mathbf{XVV}^T)_j$ be the i^{th} and j^{th} projected data points, $\frac{\|(\mathbf{XVV}^T)_i - (\mathbf{XVV}^T)_j\|_2 = \|[(\mathbf{XV})_i - (\mathbf{XV})_j]\mathbf{V}^T\|_2 = \|[(\mathbf{XV})_i - (\mathbf{XV})_j]\|_2.$

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i$, $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i$, $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $\mathbf{XV} \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace $\mathcal V$ and correspondingly V.

PROPERTIES OF PROJECTION MATRICES

• The rows of X can be approximately reconstructed from a basis of *k* vectors.

• The rows of X can be approximately reconstructed from a basis of k vectors. $\int_{V \in \mathbb{R}^{k \times k}}^{\infty} ||X - X \vee V||_{F}^{k} \times V$

784 dimensional vectors

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

X & XIN

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					•	
home n	5	3.5	3600	3	450,000	450,000

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000 /
home 2	4	2.5	2700	1	300,000	310,000
	•		•		•	
	•		•	•	•	•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . **XV** gives optimal embedding of **X** in \mathcal{V} .

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . **XV** gives optimal embedding of **X** in \mathcal{V} .

How do we find \mathcal{V} (equivilantly V)?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . **XV** gives optimal embedding of **X** in \mathcal{V} .

How do we find \mathcal{V} (equivilantly V)?

arg min
orthonormal
$$\mathbf{V} \in \mathbb{R}^{d \times k}$$
 $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{T}\|_{F}^{2} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X}\mathbf{V}\mathbf{V}^{T})_{i,j})^{2} = \sum_{i=1}^{n} \|\vec{x}_{i} - \mathbf{V}\mathbf{V}^{T}\vec{x}_{i}\|_{2}^{2}$
d-dimensional space

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . **XV** gives optimal embedding of **X** in \mathcal{V} .

How do we find \mathcal{V} (equivilantly V)?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . **XV** gives optimal embedding of **X** in \mathcal{V} .

How do we find \mathcal{V} (equivilantly V)?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . **XV** gives optimal embedding of **X** in \mathcal{V} .

How do we find \mathcal{V} (equivilantly V)?

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}\mathbf{V}^{\mathsf{T}}\vec{x}_{i}\|_{2}^{2}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}^{T} \vec{x_{i}}\|_{2}^{2}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \|_{F}^{2} = \sum_{i=1}^{n} \| \mathbf{V}^{\mathsf{T}} \vec{x}_{i} \|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v}_{j}, \vec{x}_{i} \rangle^{2}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \|_{F}^{2} = \sum_{i=1}^{n} \| \mathbf{V}^{\mathsf{T}} \vec{x}_{i} \|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v}_{j}, \vec{x}_{i} \rangle^{2}$$

Columns of V are 'directions of greatest variance' in the data.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}^{\mathsf{T}}\vec{x}_{i}\|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v}_{j}, \vec{x}_{i} \rangle^{2}$$

Columns of V are 'directions of greatest variance' in the data.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}^{\mathsf{T}}\vec{x}_{i}\|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v}_{j}, \vec{x}_{i} \rangle^{2}$$

Columns of V are 'directions of greatest variance' in the data.

- Many datasets lie close to a *k*-dimensionsal subspace.
- Can take advantage of this to do data-dependent linear dimensionality reduction (low-rank approximation.
- Dual view: both rows (data points) and columns (features) are approximated spanned by a small number of vectors.

- Many datasets lie close to a *k*-dimensionsal subspace.
- Can take advantage of this to do data-dependent linear dimensionality reduction (low-rank approximation.
- Dual view: both rows (data points) and columns (features) are approximated spanned by a small number of vectors.

 Step 1: Find this subspace by finding the directions of greatest variance in the data.

Step 2: Get best approximation to the data points in this subspace via projection matrix VV^T . $V \in \mathbb{R}^{d \times k}$ used as linear mapping from *d*-dimensional to *k*-dimensional space.