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LOGISTICS

Move Online:

- Check out Piazza post for details about moving online.

- Lectures will be streamed and recorded. Feel free to ask
questions using audio or by typing into chat. Mute when not
talking.

- Feel free to turn on video, although it will be automatically
off at the beginning of each lecture.

- Office hours will be over Zoom, after class on Tuesdays.
Different Zoom link.

- Message me if you want to attend office hours but can’t.

- Problem set rules will remain the same: you can submit in
groups of up to three, but do not have to.



LOGISTICS

Midterm:

- Midterm grades are posted in Moodle. Average was a 30/37.
- Email me if you'd like to see your graded midterm.

- | won't release an answer key, but you can ask about
midterm solutions in office hours or on Piazza.

- If you were not happy with your performance I'm happy to
talk about it, and see if there are any adjustments we can
make to get things on track.



LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points X;, ..., X, € RY lie in some
k-dimensional subspace V of RY.
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LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points X;,..., X, € RY lie in some
k-dimensional subspace V of RY.

d-dimensional space

k-dim. subspace V

Let Vi, ..., Vx be an orthonormal basis for V and V € R9** be the
matrix with these vectors as its columns.

IVTX; = VIXi[5 = 1% — XI5

Letting %; = V'X;, we have a perfect embedding from V into R".
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matrix with these vectors as its columns, V'X; € RF is still a good
embedding for x; € RY.
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Letting Vi, ..., V, be an orthonormal basis for V and V € R?** be the
matrix with these vectors as its columns, V'X; € RF is still a good
embedding for x; € R%. The key idea behind low-rank approximation
and principal component analysis (PCA).
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Main Focus of Today: Assume that data points X1, ..., X, lie close to

any k-dimensional subspace V of RY.
d-dimensional space

k-dim. subspace V

Letting Vi, ..., V, be an orthonormal basis$gr) and V € R?*F be the
matrix with these vectors as its column R* is still a good
embedding for x; « RY. The key idea behind low-rank approximation
and principal component analysis (PCA).
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LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X$e R4 has rank < k.
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X1,...,% € RY: data points, X € R"%%: data matrix, ¥, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.
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Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Letting ¥, ..., V), be an orthonormal basis for V, can write any X; as:
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nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.
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Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Letting ¥, ..., V), be an orthonormal basis for V, can write any X; as:
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Claim: X;,..., %X, € R? lie in a k-dimensional subspace V < the data
matrix X € R™<9 has rank < k.

- Every data point X; (row of X) can be written as
)_(‘,‘:VE,‘:C,‘J '\71+...+C;,k~\7;?.

Xi,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥;,...,V, €
RY: orthogonal basis for V. V € RY*k: matrix with columns ¥, .. . , V.
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+ X can be represented by (n + d) - k parameters vs. n - d.

+ The rows of X are spanned by k vectors: the columns of V. = the
columns of X are spanned by k vectors: the columns of C.

X1, ..., % data points (in R9), V: k-dimensional subspace of R?, ¥;,...,V, €
RY: orthogonal basis for V. V € R4*k: matrix with columns v, . .., V.




LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € R¥*k the data matrix can be written as X = CV'.
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nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. 7
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- VIV = |, the identity (since V is orthonormal) =
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LOW-RANK APPROXIMATION

Claim: If X;,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9*% the data matrix can be approximated as:

X ~ XWV'
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LOW-RANK APPROXIMATION
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X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V.




LOW-RANK APPROXIMATION

Claim: If X;,...,X, lie close to a k-dimensional subspace V with
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X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V.




LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*k the data matrix can be approximated as:

X ~ @ -/F/-D) \‘/\)D $\M5VKCQJ

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.

10



LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal ba5|s Ve RI*K t{je data matrix can be approximated as:

{w

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XWT); be the it" and i projected data points,
H (WD) = (XTI = [ITXV)i = (XV) VT2 = [IT(XV); — (XV),]]]2-

==t

X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.

10



LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*k the data matrix can be approximated as:
X~ XVV'.

/_\.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XWT); be the it" and i projected data points,
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LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*k the data matrix can be approximated as:
X~ XVV'.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XWT); be the it" and i projected data points,
IXWVT); — (XWT)jl2 = [II(XV); — (XV)IVT Il = 1T(XV) = (X))

- Can use XV € R"** as a compressed approximate data set.

Key question is how to find the subspace V and correspondingly V.

X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
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PROPERTIES OF PROJECTION MATRICES
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Quick Exercise: Show t atV empotent Le.
(WI(WT)j = (WT)7 for any i € R. \]\ﬂ/(/\/

Why does this make sense intuitively?
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Less Quick Exercise: (Pythagorean Theorem) Show that:

T
VV is
T T
Z||Y|2 (W5 + IV — (W )yH ”‘P’Z’B‘MB‘“

W ﬁﬂ%
y NoO

\/Tj L;\—@n‘“ ’—\



A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi,...,X, € RY to lie close to a
k-dimensional subspace?
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basis of k vectors.
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DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;,...,X, € R? to lie close to a
k-dimensional subspace?



DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;, ..., X, € RY to lie close to a
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DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors| list price|sale price

home 1 2 2 1800 [ 2 | 200,000 | 195,000
4 25 2700 | 1 | 300,000 | 310,000

home 2

home n 5 3.5 3600 3 450,000 | 450,000
13
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Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
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BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

X1,...,% € RY: data points, X € R"*%: data matrix, v1, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
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BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

argmax IXVVT|[2 = Z VWX 13

orthonormal VERd Xk

X1,...,% € RY: data points, X € R"%%: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.
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SUMMARY

- Many datasets lie close to a k-dimensionsal subspace.

- Can take advantage of this to do data-dependent linear
dimensionality reduction (low-rank approximation.

- Dual view: both rows (data points) and columns (features)
are approximated spanned by a small number of vectors.
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o N

o |- Step 1: Find this subspace by finding the directions of
greatest variance in the data.
Step 2: Get best approximation to the data points in this
subspace via projection matrix W'. V € R9** used as linear

apping from d-dimensional to k-dimensional space.
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