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logistics

• Problem Set 2 is due this upcoming Sunday 3/8 at 8pm.
• Midterm is next Thursday, 3/12. See webpage for study
guide/practice questions.

• I will hold office hours after class today.
• Next week office hours will be at the usual time after class
Tuesday and also before class at 10:00am.
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summary

Last Class: Finished Up Johnson-Lindenstrauss Lemma

• Completed the proof of the Distributional JL lemma.
• Showed two applications of random projection: faster
support vector machines and k-means clustering.

• Started discussion of high-dimensional geometry.

This Class: High-Dimensional Geometry

• Bizarre phemomena in high-dimensional space.
• Connections to JL lemma and random projection.
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orthogonal vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space? Answer: d.

What is the largest set of unit vectors in d-dimensional space
that have all pairwise dot products |⟨⃗x, y⃗⟩| ≤ ϵ? (think ϵ = .01)
Answer: 2Θ(ϵ2d).

In fact, an exponentially large set of random vectors will be
nearly pairwise orthogonal with high probability!

3



Claim: 2Θ(ϵ2d) random d-dimensional unit vectors will have all
pairwise dot products |⟨⃗x, y⃗⟩| ≤ ϵ (be nearly orthogonal).

Proof: Let x⃗1, . . . , x⃗t each have independent random entries set
to ±1/

√
d.

• What is ∥⃗xi∥2? Every x⃗i is always a unit vector.
• What is E[⟨⃗xi, x⃗j⟩]? E[⟨⃗xi, x⃗j⟩] = 0
• By a Chernoff bound, Pr[|⟨⃗xi, x⃗j⟩| ≥ ϵ] ≤ 2e−ϵ2d/6.
• If we chose t = 1

2e
ϵ2d/12, using a union bound over all(t

2
)
≤ 1

8e
ϵ2d/6 possible pairs, with probability ≥ 3/4 all will be

nearly orthogonal.
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curse of dimensionality

Up Shot: In d-dimensional space, a set of 2Θ(ϵ2d) random unit
vectors have all pairwise dot products at most ϵ (think ϵ = .01)

∥⃗xi − x⃗j∥22 = ∥⃗xi∥22 + ∥⃗xj∥22 − 2⃗xTi x⃗j ≥ 1.98.

Even with an exponential number of random vector samples,
we don’t see any nearby vectors.

• Can make methods like nearest neighbor classification or
clustering useless.

Curse of dimensionality for sampling/learning functions in
high-dimensional space – samples are very ‘sparse’ unless we
have a huge amount of data.

• Only hope is if we lots of structure (which we typically do...)
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curse of dimensionality

Distances for MNIST Digits:
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Distances for Random Images:
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Another Interpretation: Tells us that random data can be a very bad
model for actual input data. 6



connection to dimensionality reduction

Recall: The Johnson Lindenstrauss lemma states that if
Π ∈ Rm×d is a random matrix (linear map) with m = O

(
log n
ϵ2

)
,

for x⃗1, . . . , x⃗n ∈ Rd with high probability, for all i, j:

(1− ϵ)∥⃗xi − x⃗j∥22 ≤ ∥Πx⃗i −Πx⃗j∥22 ≤ (1+ ϵ)∥⃗xi − x⃗j∥22.

Implies: If x⃗1, . . . , x⃗n are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ϵ/8),
then Πx⃗1

∥Πx⃗1∥2
, . . . , Πx⃗n

∥Πx⃗n∥2
are nearly orthogonal unit vectors in

m-dimensions (with pairwise dot products bounded by ϵ).

• Similar to SVM analysis. Algebra is a bit messy but a good
exercise to partially work through.
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connection to dimensionality reduction

Claim 1: n nearly orthogonal unit vectors can be projected to
m = O

(
log n
ϵ2

)
dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 2O(ϵ2m) nearly
orthogonal vectors.

• For both these to hold it might be that n ≤ 2O(ϵ2m).
• 2O(ϵ2m) = 2O(log n) ≥ n. Tells us that the JL lemma is optimal
up to constants.

• m is chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in question
after projection to a much lower dimensional space.
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bizarre shape of high-dimensional balls

Let Bd be the unit ball in d dimensions. Bd = {x ∈ Rd : ∥x∥2 ≤ 1}.

What percentage of the volume of Bd falls within ϵ distance of its
surface? Answer: all but a (1− ϵ)d ≤ e−ϵd fraction. Exponentially
small in the dimension d!

Volume of a radius R ball is π
d
2

(d/2)! · R
d.
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bizarre shape of high-dimensional balls

All but an e−ϵd fraction of a unit ball’s volume is within ϵ of its
surface. If we randomly sample points with ∥x∥2 ≤ 1, nearly all will
have ∥x∥2 ≥ 1− ϵ.

• Isoperimetric inequality: the ball has the maximum surface
area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional shape,
nearly all will fall near its surface.

• ‘All points are outliers.’ 10



bizarre shape of high-dimensional balls

What fraction of the cubes are visible on the surface of the
cube?

103 − 83
103 =

1000− 512
1000 = .488.
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bizarre shape of high-dimensional balls

What percentage of the volume of Bd falls within ϵ distance of its
equator? Answer: all but a 2Θ(−ϵ2d) fraction.

Formally: volume of set S = {x ∈ Bd : |x(1)| ≤ ϵ}.

By symmetry, all but a 2Θ(−ϵ2d) fraction of the volume falls within ϵ of
any equator! S = {x ∈ Bd : |⟨x, t⟩| ≤ ϵ} 12



bizarre shape of high-dimensional balls

Claim 1: All but a 2Θ(−ϵ2d) fraction of the volume of a ball falls within
ϵ of any equator.

Claim 2: All but a 2Θ(−ϵd) fraction falls within ϵ of its surface.

How is this possible? High-dimensional space looks nothing like this
picture!
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concentration of volume at equator

Claim: All but a 2Θ(−ϵ2d) fraction of the volume of a ball falls within ϵ

of its equator. I.e., in S = {x ∈ Bd : |x(1)| ≤ ϵ}.

Proof Sketch:

• Let x have independent Gaussian N (0, 1) entries and let x̄ = x
∥x∥2 . x̄

is selected uniformly at random from the surface of the ball.
• Suffices to show that Pr[|x̄(1)| > ϵ] ≤ 2Θ(−ϵ2d). Why?
• x̄(1) = x(1)

∥x∥2 . What is E[∥x∥
2
2]?E[∥x∥22] =

∑d
i=1 E[x(i)2] = d.

Pr[∥x∥22 ≤ d/2] ≤ 2−Θ(d)

• Conditioning on ∥x∥22 ≥ d/2, since x(1) is normally distributed,

Pr[|x̄(1)| > ϵ] = Pr[|x(1)| > ϵ · ∥x∥2]

≤ Pr[|x(1)| > ϵ ·
√
d/2] = 2Θ(−(ϵ

√
d/2)2) = 2Θ(−ϵ2d).
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high-dimensional cubes

Let Cd be the d-dimensional cube: Cd = {x ∈ Rd : |x(i)| ≤ 1 ∀ i}.

In low-dimensions, the cube is not that different from the ball.

But volume of Cd is 2d while volume of Bd is π
d
2

(d/2)! =
1

dΘ(d) . A
huge gap! So something is very different about these shapes...
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high-dimensional cubes

Corners of cube are
√
d times further away from the origin

than the surface of the ball.
16



high-dimensional cubes

Data generated from the ball Bd will behave very differently than
data generated from the cube Cd.

• x ∼ Bd has ∥x∥22 ≤ 1.
• x ∼ Cd has E[∥x∥22] = ?d/3, and Pr[∥x∥22 ≤ d/6] ≤ 2−Θ(d).
• Almost all the volume of the unit cube falls in its corners, and
these corners lie far outside the unit ball.
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takaways

• High-dimensional space behaves very differently from
low-dimensional space.

• Random projection (i.e., the JL Lemma) reduces to a much
lower-dimensional space that is still large enough to capture
this behavior on a subset of n points.

• Need to be careful when using low-dimensional intuition for
high-dimensional vectors.

• Need to be careful when modeling data as random vectors
in high-dimensions.
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