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LOGISTICS

- Problem Set 2 is due this upcoming Sunday 3/8 at 8pm.

- Midterm is next Thursday, 3/12. See webpage for study
guide/practice questions.

- I will hold office hours after class today.

- Next week office hours will be at the usual time after class
Tuesday and also before class at 10:00am.



SUMMARY

Last Class: Finished Up Johnson-Lindenstrauss Lemma

- Completed the proof of the Distributional JL lemma.

- Showed two applications of random projection: faster
support vector machines and k-means clustering.

- Started discussion of high-dimensional geometry.



SUMMARY

Last Class: Finished Up Johnson-Lindenstrauss Lemma

- Completed the proof of the Distributional JL lemma.

- Showed two applications of random projection: faster
support vector machines and k-means clustering.

- Started discussion of high-dimensional geometry.
This Class: High-Dimensional Geometry

- Bizarre phemomena in high-dimensional space.

- Connections to JL lemma and random projection.
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ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space? Answer: d.

What is the largest set of unit vectors in d-dimensional space
that have all pairwise dot products |(X, )| < €? (think e = .01)
Answer; 20(c’d).

In fact, an exponentially large set of random vectors will be
nearly pairwise orthogonal with high probability!
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Claim: 2°2(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X, )| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set

to +1/V/d.

Every X; is always a unit vector.



Claim: 2°2(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X, )| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set

to +1/V/d.

Every X; is always a unit vector.
E[(X,X)] =0



Claim: 2°2(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X, )| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set

to +1/V/d.

Every X; is always a unit vector.
E[(X,X)] =0
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Claim: 2°2(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X, )| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set
to +£1/V/d.
L
Every X; is always a unit vector. e t({__’)si
S o 2 2
E[<XI7X/>] =0 2 UL
- By a Chernoff bound, Pr[|(X;, X;)| > €] < 2e-.9/6, ~ =Y ('
Y . R———— AR
- If we chose t = je° /2 uysing a union bound over all = %c/
(5) < 3e9/% possible pairs, with probability > 3/4 all will be
nearly orthogonal.
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

1%, 518 = 1513 + 1513 209> 1.8.
<30
v,



CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

T=>

I = %13 = 1515 + 1% 3 - 27%; > 1.98.
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Even with an exponential number of random vector samples,
we don't see any nearby vectors.



CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

T=>

I = %13 = 1515 + 1% 3 - 27%; > 1.98.

Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- Can make methods like nearest neighbor classification or
clustering useless.



CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)

T=>

I = %13 = 1515 + 1% 3 - 27%; > 1.98.

Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- Can make methods like nearest neighbor classification or
clustering useless.

Curse of dimensionality for sampling/learning functions in
high-dimensional space — samples are very ‘sparse’ unless we
have a huge amount of data.



CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 22(€’d) random unit
vectors have all pairwise dot products at most e (think e = .01)
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Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- Can make methods like nearest neighbor classification or
clustering useless.

Curse of dimensionality for sampling/learning functions in
high-dimensional space — samples are very ‘sparse’ unless we
have a huge amount of data.

- Only hope is if we lots of structure (which we typically do...)
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Distances for Random Images:

x10”

Another Interpretation: Tells us that random data can be a very bad
model for actual input data. 6



CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :
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Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2

Implies: If Xi,...,X, are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by €/8),
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N < R4 is a random matrix (linear map) with m = 0 (log”>,

for X;,..., X, € R? with high probability, for all i, :

(1= )l = %[5 < [NX; - NX[3 < (1 + 1% — X2

Implies: If Xi,...,X, are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ¢/8),
then ¥ ¥ 3re nearly orthogonal unit vectors in

x> Ml
m-dimensions (with pairwise dot products bounded by e).

- Similar to SVM analysis. Algebra is a bit messy but a good
exercise to partially work through.
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CONNECTION TO DIMENSIONALITY REDUCTION
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Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it might be that n < 20(¢'m),
. 20(ezm) _ 2O(logn) > n.
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it might be that n < 20(¢'m),

- 20(e?m) — 70(logn) > n Tells us that the JL lemma is optimal

up to constants. B
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (l"%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢™) nearly
orthogonal vectors.

- For both these to hold it might be that n < 20(¢'m),
- 20(e?m) — 20(logM 2y Tells us that the JL lemma is optimal
up to constants.

- m is chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in question
after projection to a much lower dimensional space.
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Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.
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Let By be the unit ball in d dimensions. By = {x € RY : ||x||; < 1}.

What percentage of the volume of By falls within e distance of its
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let By be the unit ball in d dimensions. By = {x € RY : ||x||; < 1}.

What percentage of the volume of By falls within e distance of its
surface? Answer: all but a (1 — €)? < e~ fraction. Exponentially
small in the dimension d!
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Volume of a radius R ball is ¢f7; - RY.




BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e~< fraction of a unit ball's volume is within e of its
surface.
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All but an e~ fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x||, < 1, nearly all will
have ||x]. > 1—e
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All but an e~ fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x||, < 1, nearly all will
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- Isoperimetric inequality: the ball has themaximum surface
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All but an e~ fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x||, < 1, nearly all will
have ||x|l, > 1—e.

- Isoperimetric inequality: the ball has the maximum surface
area/volume ratio of any shape.

ooQ

+ If we randomly sample points from any high-dimensional shape,
nearly all will fall near its surface.
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e~ fraction of a unit ball's volume is within e of its
surface. If we randomly sample points with ||x||, < 1, nearly all will
have ||x|l, > 1—e.

- Isoperimetric inequality: the ball has the maximum surface
area/volume ratio of any shape.

ooQ

+ If we randomly sample points from any high-dimensional shape,
nearly all will fall near its surface.

- ‘All points are outliers! 10



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What fraction of the cubes are visible on the surface of the
cube? ,
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What fraction of the cubes are visible on the surface of the

cube? > 5.\
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What percentage of the volume of By falls within e distance of its
equator?
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Formally: volume of set S = {x € By : |x(1)| < €}.
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What percentage of the volume of By falls within e distance of its
equator? Answer: all but a 22(=<'d) fraction.

Formally: volume of set S = {x € By : |x(1)| < €}.

By symmetry, all but a 29(—<'d) fraction of the volume falls within ¢ of
any equator! S={x € By : [{(x,t)| < €}
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Claim 1: All but a 29(=<'9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 28(=<9) fraction falls within € of its surface.
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BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a 29(=<'9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 28(=<9) fraction falls within € of its surface.

How is this possible?



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a 29(=<'9) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 2°(=<9) fraction falls within € of its surface.
Y
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How is this possible? High-dimensional space looks nothing like this
picture! 13



CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. l.e, in S = {x € By : |x(1)| < €}.
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. l.e, in S = {x € By : |x(1)| < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = |XX”2. X

is selected uniformly at random from the surface of the ball.
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. l.e, in S = {x € By : |x(1)| < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = |XX”2. X
is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr[|x(1)| > ¢] < 20(=€d) \\hy?
- %(1) = 2L what is E[|[x[J2]?

I
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = Hxxllz' X
is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr[[X(1)| > ¢] < 29D why?
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = Hxxllz' X
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = Hxxllz' X
is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr[[X(1)| > ¢] < 29D why?
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- Conditioning on ||| > d/2, since x(1) is normally distributed,

PrX()[ > € = Pr{ix()[ > e [Ix]l2]
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Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:
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CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a 29(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S={x € By : [x(1)] < €}.

Proof Sketch:

- Let x have independent Gaussian A/(0, 1) entries and let X = Hxxllz' X
is selected uniformly at random from the surface of the ball.

- Suffices to show that Pr[[X(1)| > ¢] < 29D why?
+ %(1) = 19 BBl = XL E(Y] = d. Prijx|; < d/2] < 276

- Conditioning on ||| > d/2, since x(1) is normally distributed,

PrIX(D)] > ¢ = Priix(1)| > ¢ - Ix]2]
< Pr{|x(1)| > e-+/d/2] = 20(=(e0/d/2)?) _ 9O(—€"d)
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Let Cy be the d-dimensional cube: Cy = {x € RY : [x(i)] <1V i}.

In low-dimensions, the cube is not that different from the ball.
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HIGH-DIMENSIONAL CUBES

Let Cy be the d-dimensional cube: Cy = {x € RY : [x(i)] <1V i}.

In low-dimensions, the cube is not that different from the ball.

d
But volume of Cy is 2¢ while volume of BY is 7oy = gom- A

huge gap! So something is very different about these shapes...



HIGH-DIMENSIONAL CUBES

2 dimensions
/
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HIGH-DIMENSIONAL CUBES

2 dimensions

Corners of cube are v/d times further away from the origin
than the surface of the ball.
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HIGH-DIMENSIONAL CUBES

high dimensions

Corners of cube are v/d times further away from the origin
than the surface of the ball.

16



HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than
data generated from the cube Cy.
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HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than
data generated from the cube Cy.

* X ~ By has [|x]|? < 1.

* X~ Cq has E[||x|3] = ?, \
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HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than
data generated from the cube Cy.

* X ~ By has [|x]|? < 1.
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HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than
data generated from the cube Cy.

* X ~ By has [|x]|? < 1.
© X ~ Cq has E[||x||3] = d/3, and Pr[||x|3 < d/6] < 2°),
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HIGH-DIMENSIONAL CUBES

Data generated from the ball By will behave very differently than
data generated from the cube Cy.

* X ~ By has [|x]|? < 1.

+ X ~ Cqg has E[|x|2] = d/3, and Pr{|x|2 < d/6] < 2.

- Almost all the volume of the unit cube falls in its corners, and
these corners lie far outside the unit ball.

2 dimensions

F1Y
w

high dimensions

7 N
\. | 4

17



TAKAWAYS

- High-dimensional space behaves very differently from
low-dimensional space.

- Random projection (i.e,, the JL Lemma) reduces to a much
lower-dimensional space that is still large enough to capture
this behavior on a subset of n points.

- Need to be careful when using low-dimensional intuition for
high-dimensional vectors.

- Need to be careful when modeling data as random vectors
in high-dimensions.
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