COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 12

LOGISTICS

- · Problem Set 2 is due this upcoming Sunday 3/8 at 8pm.
- · Midterm is next Thursday, 3/12. See webpage for study guide/practice questions.
- · I will hold office hours after class today.
- Next week office hours will be at the usual time after class
 Tuesday and also before class at 10:00am.

Last Class: Finished Up Johnson-Lindenstrauss Lemma

- · Completed the proof of the Distributional JL lemma.
- Showed two applications of random projection: faster support vector machines and k-means clustering.
- · Started discussion of high-dimensional geometry.

Last Class: Finished Up Johnson-Lindenstrauss Lemma

- · Completed the proof of the Distributional JL lemma.
- Showed two applications of random projection: faster support vector machines and k-means clustering.
- · Started discussion of high-dimensional geometry.

This Class: High-Dimensional Geometry

- · Bizarre phemomena in high-dimensional space.
- · Connections to JL lemma and random projection.

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$) Answer: $2^{\Theta(\epsilon^2 d)}$.

2/1000

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$) Answer: $2^{\Theta(\epsilon^2 d)}$.

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

۲ پ

Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

to
$$\pm 1/\sqrt{d}$$
.
V. What is $\|\vec{x}_i\|_2$? = $\sqrt{2} \times i(j)^2$ = $\sqrt{2$

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$?

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- · What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$

Proof: Let $\vec{x}_1, \dots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

• What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector. What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_i \rangle]$? $\mathbb{E}[\langle \vec{x}_i | \vec{x}_i \rangle] = 0$
- What is $\mathbb{E}[\langle \vec{x_i}, \vec{x_i} \rangle]$? $\mathbb{E}[\langle \vec{x_i}, \vec{x_i} \rangle] = 0$
- WHAT IS $\mathbb{E}[\langle X_i, X_j \rangle]$! $\mathbb{E}[\langle X_i, X_j \rangle] = 0$ By a Chernoff bound, $\Pr[|\langle \vec{X}_i, \vec{X}_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$ If we chose $t = \frac{1}{2}e^{\epsilon^2 d/12}$, using a union bound over all $= \frac{1}{4}e^{\epsilon^2 d/12}$ $\binom{t}{2} \leq \frac{1}{8} e^{\epsilon^2 d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.

Up Shot: In d-dimensional space, a set of
$$2^{\Theta(\epsilon^2 d)}$$
 random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

The following points we really orthogonally $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2$$

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j$$

$$+ - 2 \xi$$

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_{i} - \vec{x}_{j}\|_{2}^{2} = \|\vec{x}_{i}\|_{2}^{2} + \|\vec{x}_{j}\|_{2}^{2} - 2\vec{x}_{i}^{T}\vec{x}_{j} \ge 1.98.$$

$$\leq 2.77$$

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

 Can make methods like nearest neighbor classification or clustering useless.

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

• Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very 'sparse' unless we have a huge amount of data.

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

• Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very 'sparse' unless we have a huge amount of data.

· Only hope is if we lots of structure (which we typically do...)

Distances for MNIST Digits:

Distances for Random Images:

Distances for MNIST Digits:

Distances for Random Images:

Another Interpretation: Tells us that random data can be a very bad model for actual input data.

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \dots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi\vec{x}_1}{\|\Pi\vec{x}_1\|_2}, \dots, \frac{\Pi\vec{x}_n}{\|\Pi\vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

• Similar to SVM analysis. Algebra is a bit messy but a good exercise to partially work through.

 $\inf_{n \in \mathbb{R}} \mathcal{L}_n \text{ nearly orthogonal unit vectors can be projected to}$ $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

• For both these to hold it is that $n \leq 2^{O(\epsilon^2 m)}$.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $\cdot \ 2^{O(\epsilon^2 m)} = \underbrace{2^{O(\log n)}}_{} \geq n.$

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n$. Tells us that the JL lemma is optimal up to constants.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$$

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \leq n$. Tells us that the JL lemma is optimal up to constants.
- m is chosen just large enough so that the odd geometry of d-dimensional space still holds on the n points in question after projection to a much lower dimensional space.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Answer: all but a $(1 - \epsilon)^d \le e^{-\epsilon d}$ fraction. Exponentially small in the dimension d!

Volume of a radius *R* ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the maximum surface area/volume ratio of any shape.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the maximum surface area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \le 1$, nearly all will have $\|x\|_2 \ge 1 - \epsilon$.

• Isoperimetric inequality: the ball has the maximum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
- · 'All points are outliers.'

What fraction of the cubes are visible on the surface of the cube?

What fraction of the cubes are visible on the surface of the cube? $\frac{3}{2}$

$$\frac{10^3 - 8^3}{10^3} = \frac{1000 - 512}{1000} = .488.$$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator?

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \le \epsilon\}$

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible?

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface. Concertration neasure B(2/2)

How is this possible? High-dimensional space looks nothing like this picture!

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

Proof Sketch:

• Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. What is $\mathbb{E}[\|x\|_2^2]$?

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$.

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$
- · Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed,

$$\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$$

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$
- · Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed,

$$\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$$

$$\leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}]$$

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

- Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$
- · Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed,

$$\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$$

$$\leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}] = 2^{\Theta(-(\epsilon \sqrt{d/2})^2)} = 2^{\Theta(-\epsilon^2 d)}.$$

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}$.

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}$. In low-dimensions, the cube is not that different from the ball.

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \ \forall i\}$.

In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap!

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \,\forall i\}$. In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap! So something is very different about these shapes...

Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball.

Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball.

Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube \mathcal{C}_d .

Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube \mathcal{C}_d .

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \le 1$.
- $x \sim \mathcal{C}_d$ has $\mathbb{E}[\|x\|_2^2] = ?$,

Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube C_d .

$$\begin{array}{c} \cdot \ x \sim \mathcal{B}_d \ \text{has} \ \|x\|_2^2 \leq 1. \\ \cdot \ x \sim \mathcal{C}_d \ \text{has} \ \mathbb{E}[\|x\|_2^2] = d/3, \end{array} \qquad \underbrace{\mathbb{E}[\|x\|_2^2]}_{l=1} = d/3, \qquad \underbrace{\mathbb{E}[\|x\|_2^2]}_{l=1} = d/3,$$

Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube \mathcal{C}_d .

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \le d/6] \le 2^{-\Theta(d)}$.

Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube \mathcal{C}_d .

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \le d/6] \le 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls in its corners, and these corners lie far outside the unit ball.

- High-dimensional space behaves very differently from low-dimensional space.
- Random projection (i.e., the JL Lemma) reduces to a much lower-dimensional space that is still large enough to capture this behavior on a subset of *n* points.
- Need to be careful when using low-dimensional intuition for high-dimensional vectors.
- Need to be careful when modeling data as random vectors in high-dimensions.