COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 12
• Problem Set 2 is due this upcoming Sunday 3/8 at 8pm.
• Midterm is next Thursday, 3/12. See webpage for study guide/practice questions.
• I will hold office hours after class today.
• Next week office hours will be at the usual time after class Tuesday and also before class at 10:00am.
Last Class: Finished Up Johnson-Lindenstrauss Lemma

- Completed the proof of the Distributional JL lemma.
- Showed two applications of random projection: faster support vector machines and k-means clustering.
- Started discussion of high-dimensional geometry.
Last Class: Finished Up Johnson-Lindenstrauss Lemma

- Completed the proof of the Distributional JL lemma.
- Showed two applications of random projection: faster support vector machines and k-means clustering.
- Started discussion of high-dimensional geometry.

This Class: High-Dimensional Geometry

- Bizarre phenomena in high-dimensional space.
- Connections to JL lemma and random projection.
What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.
What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

Answer: $2^{\Theta(\epsilon^2 d)} = \Omega(d)$.
What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$) Answer: $2^{\Theta(\epsilon^2 d)}$.

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).
Claim: $2^{\Theta(e^2d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.
Claim: $2^\Theta(\epsilon^2 d)$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

√ What is $\|\vec{x}_i\|_2$?

$\|\vec{x}_i\|_2 = \sqrt{\sum_{j=1}^{\frac{d}{2}} x_i(j)^2} = \sqrt{\sum_{j=1}^{\frac{d}{2}} 1/d} = \sqrt{1} = 1$

∩ What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$?

$\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = \frac{1}{d} \sum_{k=1}^{d} \mathbb{E}[x_i(k) x_j(k)] = \frac{1}{d} \sum_{k=1}^{d} 0 = 0$
Claim: $2^\Theta(\epsilon^2 d)$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $||\vec{x}_i||_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$?
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $||\vec{x}_i||_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $||\vec{x}_i||_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
- By a Chernoff bound, $\Pr[|\langle \vec{x}_i, \vec{x}_j \rangle| \geq \epsilon] \leq 2e^{-\epsilon^2 d/6}$.

\[
\begin{align*}
\sum_{k=1}^{d} \left(\frac{1}{\sqrt{d}} \cdot \frac{1}{\sqrt{d}} \right) &\leq \frac{d}{2} \leq \frac{d}{2} \leq 0 \\
&\leq 0, 1,
\end{align*}
\]
\[t = \# \text{ random vectors} \quad (e^x)^2 e^{2x} \]

Claim: \(2^{\Theta(\epsilon^2d)}\) random \(d\)-dimensional unit vectors will have all pairwise dot products \(|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon\) (be nearly orthogonal).

Proof: Let \(\vec{x}_1, \ldots, \vec{x}_t\) each have independent random entries set to \(\pm 1/\sqrt{d}\).

- **What is** \(||\vec{x}_i||_2\)? Every \(\vec{x}_i\) is always a unit vector.
- **What is** \(\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]\)? \(\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0\)
- By a Chernoff bound, \(\Pr[||\langle \vec{x}_i, \vec{x}_j \rangle|| \geq \epsilon] \leq 2e^{-\epsilon^2d/6}\).
- If we chose \(t = \frac{1}{2}e^{\epsilon^2d/12}\), using a union bound over all \((t) \leq \frac{1}{8}e^{\epsilon^2d/6}\) possible pairs, with probability \(\geq 3/4\) all will be nearly orthogonal.

\[
\Pr(\text{any pair is not nearly orthogonal}) \leq \frac{1}{8} e^{\epsilon^2d/6} \cdot 2e^{-\epsilon^2d/6} = \frac{1}{4}
\]
Up Shot: In d-dimensional space, a set of $2^\Theta(\epsilon^2 d)$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$) with good probability.

$$\Pr(\text{all } (i,j) \text{ pairs are nearly orth.)} > \frac{3}{4}$$

$$t = \frac{1}{2} \epsilon^2 d/12 = 2^{\Theta(\epsilon^2 d)}$$
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$||\vec{x}_i - \vec{x}_j||_2^2$$
CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$
\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j
\| + \| - 2\epsilon
$$
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$||\vec{x}_i - \vec{x}_j||_2^2 = ||\vec{x}_i||_2^2 + ||\vec{x}_j||_2^2 - 2\vec{x}_i^T\vec{x}_j \geq 1.98.$$
Up Shot: In \(d \)-dimensional space, a set of \(2^{\Theta(\epsilon^2 d)} \) random unit vectors have all pairwise dot products at most \(\epsilon \) (think \(\epsilon = .01 \))

\[
\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j \geq 1.98.
\]

Even with an exponential number of random vector samples, we don’t see any nearby vectors.
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$||\vec{x}_i - \vec{x}_j||_2^2 = ||\vec{x}_i||_2^2 + ||\vec{x}_j||_2^2 - 2\vec{x}_i^T\vec{x}_j \geq 1.98.$$

Even with an exponential number of random vector samples, we don’t see any nearby vectors.

- Can make methods like nearest neighbor classification or clustering useless.
Curse of Dimensionality

Up Shot: In d-dimensional space, a set of $2^{\Theta(e^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$||\vec{x}_i - \vec{x}_j||_2^2 = ||\vec{x}_i||_2^2 + ||\vec{x}_j||_2^2 - 2\vec{x}_i^T\vec{x}_j \geq 1.98.$$

Even with an exponential number of random vector samples, we don’t see any nearby vectors.

- Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very ‘sparse’ unless we have a huge amount of data.
CURSE OF DIMENSIONALITY

Up Shot: In \(d \)-dimensional space, a set of \(2^\Theta(\epsilon^2d) \) random unit vectors have all pairwise dot products at most \(\epsilon \) (think \(\epsilon = .01 \))

\[
\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j \geq 1.98.
\]

Even with an exponential number of random vector samples, we don’t see any nearby vectors.

- Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very ‘sparse’ unless we have a huge amount of data.

- Only hope is if we lots of structure (which we typically do...)
Distances for MNIST Digits:

Distances for Random Images:
Distances for MNIST Digits:

Distances for Random Images:

Another Interpretation: Tells us that random data can be a very bad model for actual input data.
Recall: The Johnson Lindenstrauss lemma states that if \(\Pi \in \mathbb{R}^{m \times d} \) is a random matrix (linear map) with \(m = O\left(\frac{\log n}{\epsilon^2}\right) \), for \(\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d \) with high probability, for all \(i, j \):

\[
(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2^2 \leq \|\Pi \vec{x}_i - \Pi \vec{x}_j\|_2^2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2^2.
\]
Recall: The Johnson Lindenstrauss lemma states that if \(\Pi \in \mathbb{R}^{m \times d} \) is a random matrix (linear map) with \(m = O \left(\frac{\log n}{\epsilon^2} \right) \), for \(\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d \) with high probability, for all \(i, j \):

\[
(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2^2 \leq \|\Pi \vec{x}_i - \Pi \vec{x}_j\|_2^2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2^2.
\]

Implies: If \(\vec{x}_1, \ldots, \vec{x}_n \) are nearly orthogonal unit vectors in \(d \)-dimensions (with pairwise dot products bounded by \(\epsilon/8 \)), then \(\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2} \) are nearly orthogonal unit vectors in \(m \)-dimensions (with pairwise dot products bounded by \(\epsilon \)).
Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{P} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$ (1 - \epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \leq \|\mathbf{P}\mathbf{x}_i - \mathbf{P}\mathbf{x}_j\|_2^2 \leq (1 + \epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2^2. $$

Implies: If $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\mathbf{P}\mathbf{x}_1}{\|\mathbf{P}\mathbf{x}_1\|_2}, \ldots, \frac{\mathbf{P}\mathbf{x}_n}{\|\mathbf{P}\mathbf{x}_n\|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

- Similar to SVM analysis. Algebra is a bit messy but a good exercise to partially work through.
Claim 1: \(n \) nearly orthogonal unit vectors can be projected to \(m = O \left(\frac{\log n}{\epsilon^2} \right) \) dimensions and still be nearly orthogonal.

Claim 2: In \(m \) dimensions, there are at most \(2^{O(\epsilon^2 m)} \) nearly orthogonal vectors.
Claim 1: \(n \) nearly orthogonal unit vectors can be projected to \(m = O \left(\frac{\log n}{\epsilon^2} \right) \) dimensions and still be nearly orthogonal.

Claim 2: In \(m \) dimensions, there are at most \(2^{O(\epsilon^2 m)} \) nearly orthogonal vectors.

- For both these to hold it might be that \(n \leq 2^{O(\epsilon^2 m)} \).
Claim 1: \(n \) nearly orthogonal unit vectors can be projected to
\(m = O \left(\frac{\log n}{\epsilon^2} \right) \) dimensions and still be nearly orthogonal.

Claim 2: In \(m \) dimensions, there are at most \(2^{O(\epsilon^2 m)} \) nearly orthogonal vectors.

- For both these to hold it might be that \(n \leq 2^{O(\epsilon^2 m)} \).
- \(2^{O(\epsilon^2 m)} = 2^{O(\log n)} \geq n \).
Claim 1: n nearly orthogonal unit vectors can be projected to $m = O \left(\frac{\log n}{\epsilon^2} \right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \geq n$. Tells us that the JL lemma is optimal up to constants.

\[
\begin{align*}
2^\epsilon m & \quad m = \frac{\log n}{\epsilon^2} \\
\eta = 2^\epsilon m & \quad 2^{\frac{\log n}{\epsilon^2}} < n
\end{align*}
\]
Claim 1: \(n \) nearly orthogonal unit vectors can be projected to \(m = O \left(\frac{\log n}{\epsilon^2} \right) \) dimensions and still be nearly orthogonal.

Claim 2: In \(m \) dimensions, there are at most \(2^{O(\epsilon^2m)} \) nearly orthogonal vectors.

- For both these to hold it might be that \(n \leq 2^{O(\epsilon^2m)} \).
- \(2^{O(\epsilon^2m)} = 2^{\sqrt{O(\log n)}} \leq \sqrt{n} \). Tells us that the JL lemma is optimal up to constants.
- \(m \) is chosen just large enough so that the odd geometry of \(d \)-dimensional space still holds on the \(n \) points in question after projection to a much lower dimensional space.
Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{ x \in \mathbb{R}^d : \|x\|_2 \leq 1 \}$.
Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{ x \in \mathbb{R}^d : \|x\|_2 \leq 1 \}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?
Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : \|x\|_2 \leq 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Volume radius 1 ball

Volume radius $(1-\epsilon)$ ball

$R_d = (1-\epsilon)^{\frac{d}{2}}$

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

adios Ibo, K¥1 - volume radius (3-4) ball

$R^2 = 1$
Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : \|x\|_2 \leq 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Answer: all but a $(1 - \epsilon)^d \leq e^{-\epsilon^d}$ fraction. Exponentially small in the dimension d!

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS
All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface.
All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \leq 1$, nearly all will have $\|x\|_2 \geq 1 - \epsilon$.
All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \leq 1$, nearly all will have $\|x\|_2 \geq 1 - \epsilon$.

- **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.
All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \leq 1$, nearly all will have $\|x\|_2 \geq 1 - \epsilon$.

- **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \leq 1$, nearly all will have $\|x\|_2 \geq 1 - \epsilon$.

• **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.

• ‘All points are outliers.’
What fraction of the cubes are visible on the surface of the cube?

\[\frac{1}{2} \]
What fraction of the cubes are visible on the surface of the cube?

\[20^3 - 8^3 = \]

\[\frac{10^3 - 8^3}{10^3} = \frac{1000 - 512}{1000} = .488 \]
What percentage of the volume of B_d falls within ϵ distance of its equator?

Formally: volume of set $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

$$\frac{\epsilon R^{d-1}}{R^d} = \frac{\epsilon}{R}$$
What percentage of the volume of \mathcal{B}_d falls within ε distance of its equator? Answer: all but a $2^{\Theta(-\varepsilon^2d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \leq \varepsilon\}$.
What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \leq \epsilon\}$.

By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \leq \epsilon\}$
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^\Theta(-\varepsilon^2 d)$ fraction of the volume of a ball falls within ε of any equator.

Claim 2: All but a $2^\Theta(-\varepsilon d)$ fraction falls within ε of its surface.
Claim 1: All but a $2^\Theta(-\epsilon^2 d)$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^\Theta(-\epsilon d)$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible?
Claim 1: All but a $2^{\Theta(-\varepsilon^2 d)}$ fraction of the volume of a ball falls within ε of any equator.

Claim 2: All but a $2^{\Theta(-\varepsilon d)}$ fraction falls within ε of its surface.

How is this possible? High-dimensional space looks nothing like this picture!
Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.
CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^{\Theta(-\epsilon^2d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

- Let x have independent Gaussian $\mathcal{N}(0, 1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
Claim: All but a $2^\Theta(-\epsilon^2 d)$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

- Let x have independent Gaussian $\mathcal{N}(0, 1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^\Theta(-\epsilon^2 d)$. Why?
CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

• Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.

• Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?

• $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. What is $\mathbb{E}[\|x\|_2^2]$?
Claim: All but a $2^{\Theta(-\epsilon^2d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

• Let x have independent Gaussian $\mathcal{N}(0,1)$ entries and let $\tilde{x} = \frac{x}{||x||_2}$. \tilde{x} is selected uniformly at random from the surface of the ball.

• Suffices to show that $\Pr[|\tilde{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2d)}$. Why?

• $\tilde{x}(1) = \frac{x(1)}{||x||_2}$. $\mathbb{E}[||x||_2^2] = \sum_{i=1}^{d} \mathbb{E}[x(i)^2] = d$.

Claim: All but a $2^{\Theta(-\epsilon^2d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

• Let x have independent Gaussian $\mathcal{N}(0, 1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.

• Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2d)}$. Why?

• $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \leq d/2] \leq 2^{-\Theta(d)}$
CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^\Theta(-\epsilon^2 d)$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

• Let x have independent Gaussian $\mathcal{N}(0, 1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.

• Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^\Theta(-\epsilon^2 d)$. Why?

• $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \leq d/2] \leq 2^{-\Theta(d)}$

• Conditioning on $\|x\|_2^2 \geq d/2$, since $x(1)$ is normally distributed,

$$\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot \|x\|_2]$$
Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

- Let x have independent Gaussian $\mathcal{N}(0, 1)$ entries and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^{d} \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \leq d/2] \leq 2^{-\Theta(d)}$
- Conditioning on $\|x\|_2^2 \geq d/2$, since $x(1)$ is normally distributed,
 \[
 \Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot \|x\|_2]
 \leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}]
 \]
Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

- Let x have independent Gaussian $\mathcal{N}(0, 1)$ entries and let $\tilde{x} = \frac{x}{\|x\|_2}$. \tilde{x} is selected uniformly at random from the surface of the ball.

- Suffices to show that $\Pr[|\tilde{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?

- $\tilde{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^{d} \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \leq d/2] \leq 2^{-\Theta(d)}$

- Conditioning on $\|x\|_2^2 \geq d/2$, since $x(1)$ is normally distributed,

$$\Pr[|\tilde{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot \|x\|_2]$$

$$\leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}] = 2^{\Theta(-(\epsilon \sqrt{d/2})^2)} = 2^{\Theta(-\epsilon^2 d)}.$$
Let C_d be the d-dimensional cube: $C_d = \{ x \in \mathbb{R}^d : |x(i)| \leq 1 \ \forall \ i \}$.
Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \leq 1 \ \forall \ i\}$. In low-dimensions, the cube is not that different from the ball.
Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \leq 1 \ \forall \ i\}$. In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of B_d is $\frac{\pi^d}{(d/2)!} = \frac{1}{d!^{\Theta(d)}}$. A huge gap!
Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \leq 1 \forall i\}$.

In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of B_d is $\frac{\pi^{d/2}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap! So something is very different about these shapes...
\[\sqrt{d} : \text{Distance from corner to center} \]
Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball.
Corners of cube are \sqrt{d} times further away from the origin than the surface of the ball.
Data generated from the ball B_d will behave very differently than data generated from the cube C_d.
Data generated from the ball B_d will behave very differently than data generated from the cube C_d.

- $x \sim B_d$ has $\|x\|_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = ?$,

![Diagram showing a ball and a cube with some points marked.](image)
Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube \mathcal{C}_d.

- $x \sim \mathcal{B}_d$ has $\|x\|_2^2 \leq 1$.
- $x \sim \mathcal{C}_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$.

\[
\mathbb{E} \|x\|_2^2 = \sum_{i=1}^{d} \mathbb{E} x(i)^2 = \frac{d}{3} \frac{1}{3} = \frac{d}{3}
\]
Data generated from the ball B_d will behave very differently than data generated from the cube C_d.

- $x \sim B_d$ has $\|x\|_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \leq d/6] \leq 2^{-\Theta(d)}$.
Data generated from the ball B_d will behave very differently than data generated from the cube C_d.

- $x \sim B_d$ has $\|x\|_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \leq d/6] \leq 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls in its corners, and these corners lie far outside the unit ball.
• High-dimensional space behaves very differently from low-dimensional space.
• Random projection (i.e., the JL Lemma) reduces to a much lower-dimensional space that is still large enough to capture this behavior on a subset of \(n \) points.
• Need to be careful when using low-dimensional intuition for high-dimensional vectors.
• Need to be careful when modeling data as random vectors in high-dimensions.