COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 10

LOGISTICS

- · Problem Set 2 is due Sunday 3/8.
- Midterm on Thursday, 3/12. Will cover material through today
- I have posted a study guide and practice questions on the course schedule.
- Next Tuesday I can't do office hours after class. I will hold them before class on Tuesday (10:00am - 11:15am) and after class on Thursday (12:45pm-2:00pm).

SUMMARY

Last Class: Dimensionality Reduction

Last Class: Dimensionality Reduction

- · Finished up Count-Min Sketch and Frequent Items.
- Applications and examples of dimensionality reduction in data science (PCA, LSA, autoencoders, etc.)
- Low-distortion embeddings and some simple cases of when no-distortion embeddings are possible.

Last Class: Dimensionality Reduction

- · Finished up Count-Min Sketch and Frequent Items.
- Applications and examples of dimensionality reduction in data science (PCA, LSA, autoencoders, etc.)
- Low-distortion embeddings and some simple cases of when no-distortion embeddings are possible.

The Johnson-Lindenstrauss Lemma.

- Any data set can be embedded with low distortion into low-dimensional space.
- · Prove the JL Lemma.
- Discuss algorithmic considerations, connections to other methods (SimHash), etc.

LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$, distance function D, and error parameter $\epsilon \geq 0$, find $\tilde{x}_1, \dots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) and distance function \tilde{D} such that for all $i, j \in [n]$:

$$(1-\epsilon)D(\vec{x}_i,\vec{x}_j) \leq \tilde{D}(\tilde{x}_i,\tilde{x}_j) \leq (1+\epsilon)D(\vec{x}_i,\vec{x}_j).$$

LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$, distance function D, and error parameter $\epsilon \geq 0$, find $\tilde{x}_1, \dots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) and distance function \tilde{D} such that for all $i, j \in [n]$:

$$(1-\epsilon)D(\vec{x}_i,\vec{x}_j) \leq \tilde{D}(\tilde{x}_i,\tilde{x}_j) \leq (1+\epsilon)D(\vec{x}_i,\vec{x}_j).$$

Euclidean Low Distortion Embedding: Given $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ and error parameter $\epsilon \geq 0$, find $\tilde{x}_1, \dots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) such that for all $i, j \in [n]$:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

We will primarily focus on this restricted notion in this class.

LOW DISTORTION EMBEDDING

Euclidean Low Distortion Embedding: Given $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ and error parameter $\epsilon \geq 0$, find $\tilde{x}_1, \dots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) such that for all $i, j \in [n]$:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

Assume that $\vec{x}_1, \dots, \vec{x}_n$ all lie on the 1st axis in \mathbb{R}^d .

Set m = 1 and $\tilde{x}_i = \vec{x}_i(1)$ (i.e., \tilde{x}_i is just a single number).

$$\cdot \|\tilde{x}_i - \tilde{x}_j\|_2 = \sqrt{[\vec{x}_i(1) - \vec{x}_j(1)]^2} = |\vec{x}_i(1) - \vec{x}_j(1)| = \|\vec{x}_i - \vec{x}_j\|_2.$$

• An embedding with no distortion from any d into m = 1.

Assume that $\vec{x}_1, \dots, \vec{x}_n$ all lie on the unit circle in \mathbb{R}^2 .

- Admits a low-distortion embedding to 1 dimension by letting $\tilde{x}_i = \theta(\vec{x}_i)$.
- · Does it admit a low-distortion Euclidean embedding?

Assume that $\vec{x}_1, \dots, \vec{x}_n$ all lie on the unit circle in \mathbb{R}^2 .

- Admits a low-distortion embedding to 1 dimension by letting $\tilde{x}_i = \theta(\vec{x}_i)$.
- Does it admit a low-distortion Euclidean embedding?

Assume that $\vec{x}_1, \dots, \vec{x}_n$ all lie on the unit circle in \mathbb{R}^2 .

- Admits a low-distortion embedding to 1 dimension by letting $\tilde{x}_i = \theta(\vec{x}_i)$.
- Does it admit a low-distortion Euclidean embedding? No! Send me a proof on Piazza for 3 bonus points on Problem Set 2.

Another easy case: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Another easy case: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

• Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

Another easy case: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

• Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

Another easy case: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

- Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- If we set $\tilde{x}_i \in \mathbb{R}^k$ to $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$ we have:

$$\|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 = \|\mathbf{V}^T (\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j)\|_2 = \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j\|_2.$$

Another easy case: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

- Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- · If we set $\tilde{x}_i \in \mathbb{R}^k$ to $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$ we have:

$$\|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 = \|\mathbf{V}^{\mathsf{T}}(\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j)\|_2 = \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j\|_2.$$

• An embedding with no distortion from any d into m = k.

Another easy case: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

- Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- If we set $\tilde{x}_i \in \mathbb{R}^k$ to $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$ we have:

$$||\tilde{x}_i - \tilde{x}_j||_2 = ||\mathbf{V}^T (\vec{x}_i - \vec{x}_j)||_2 = ||\vec{x}_i - \vec{x}_j||_2.$$

- An embedding with no distortion from any d into m = k.
- $V^T : \mathbb{R}^d \to \mathbb{R}^k$ is a linear map giving our embedding.

What about when we don't make any assumptions on $\vec{x}_1, \dots, \vec{x}_n$. I.e., they can be scattered arbitrarily around d-dimensional space?

• Can we find a no-distortion embedding into $m \ll d$ dimensions?

What about when we don't make any assumptions on $\vec{x}_1, \dots, \vec{x}_n$. I.e., they can be scattered arbitrarily around d-dimensional space?

• Can we find a no-distortion embedding into $m \ll d$ dimensions? No. Require m = d.

What about when we don't make any assumptions on $\vec{x}_1, \dots, \vec{x}_n$. I.e., they can be scattered arbitrarily around d-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions? No. Require m = d.
- Can we find an ϵ -distortion embedding into $m \ll d$ dimensions for $\epsilon > 0$?

For all
$$i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

What about when we don't make any assumptions on $\vec{x}_1, \dots, \vec{x}_n$. I.e., they can be scattered arbitrarily around d-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions? No. Require m = d.
- Can we find an ϵ -distortion embedding into $m \ll d$ dimensions for $\epsilon > 0$? Yes! Always, with m depending on ϵ .

For all
$$i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to R^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$:

For all
$$i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to R^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$:

For all
$$i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

For d=1 trillion, $\epsilon=.05$, and n=100,000, $m\approx 6600$.

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to R^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$:

For all
$$i, j$$
: $(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

For d=1 trillion, $\epsilon=.05$, and n=100,000, $m\approx 6600$.

Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.

RANDOM PROJECTION

For any $\vec{x}_1, \dots, \vec{x}_n$ and $\Pi \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$:

For all
$$i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

RANDOM PROJECTION

For any $\vec{x}_1, \dots, \vec{x}_n$ and $\Pi \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$:

For all
$$i, j: (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

• Π is known as a random projection. It is a random linear function, mapping length d vectors to length m vectors.

RANDOM PROJECTION

For any $\vec{x}_1, \dots, \vec{x}_n$ and $\Pi \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$:

For all
$$i, j: (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

- Π is known as a random projection. It is a random linear function, mapping length d vectors to length m vectors.
- \cdot Π is data oblivious. Stark contrast to methods like PCA.

· Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \Longrightarrow more efficient computation of $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$.

- Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \implies more efficient computation of $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$.
- Data oblivious property means that once Π is chosen, $\tilde{x}_1, \dots, \tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just O(d + nm) vs. O(nd) to store the full data set.

- Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \implies more efficient computation of $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$.
- Data oblivious property means that once Π is chosen, $\tilde{x}_1, \dots, \tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just O(d + nm) vs. O(nd) to store the full data set.
- Compression can also be easily performed in parallel on different servers.

- Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \implies more efficient computation of $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$.
- Data oblivious property means that once Π is chosen, $\tilde{x}_1, \dots, \tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just O(d + nm) vs. O(nd) to store the full data set.
- Compression can also be easily performed in parallel on different servers.
- · When new data points are added, can be easily compressed, without updating existing points.

Compression operation is
$$\underline{\tilde{\mathbf{x}}_i} = \underline{\mathbf{\Pi}} \vec{\mathbf{x}}_i$$
, so for any j ,
$$\underline{\tilde{\mathbf{x}}_i(j)} = \langle \mathbf{\Pi}(j), \vec{\mathbf{x}}_i \rangle = \sum_{k=1}^d \mathbf{\Pi}(j,k) \cdot \vec{\mathbf{x}}_i(k).$$

 $\vec{x}_1, \ldots, \vec{x}_n$: original points (d dims.), $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points (m < d dims.), $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection (embedding function)

Compression operation is $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, so for any j,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{x}}_i \rangle = \sum_{k=1}^{a} \mathbf{\Pi}(j, k) \cdot \vec{\mathbf{x}}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 $\vec{x}_1, \dots, \vec{x}_n$: original points (d dims.), $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$: compressed points (m < d dims.), $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection (embedding function)

Compression operation is $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, so for any j,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{x}}_i \rangle = \sum_{k=1}^{a} \mathbf{\Pi}(j,k) \cdot \vec{\mathbf{x}}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 $\vec{x}_1,\ldots,\vec{x}_n$: original points (d dims.), $\tilde{\mathbf{x}}_1,\ldots,\tilde{\mathbf{x}}_n$: compressed points (m< d dims.), $\mathbf{\Pi}\in\mathbb{R}^{m\times d}$: random projection (embedding function)

Compression operation is $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{\mathbf{x}}_i$, so for any j,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{x}}_i \rangle = \sum_{k=1}^{a} \mathbf{\Pi}(j,k) \cdot \vec{\mathbf{x}}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 $\vec{x}_1, \dots, \vec{x}_n$: original points (d dims.), $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$: compressed points (m < d dims.), $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection (embedding function)

Compression operation is $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, so for any j,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{x}}_i \rangle = \sum_{k=1}^{a} \mathbf{\Pi}(j,k) \cdot \vec{\mathbf{x}}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 $\vec{x}_1, \dots, \vec{x}_n$: original points (d dims.), $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$: compressed points (m < d dims.), $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection (embedding function)

Compression operation is $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, so for any j,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{x}}_i \rangle = \sum_{k=1}^{\sigma} \mathbf{\Pi}(j,k) \cdot \vec{\mathbf{x}}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 $\vec{x}_1, \dots, \vec{x}_n$: original points (d dims.), $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$: compressed points (m < d dims.), $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection (embedding function)

Compression operation is $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{\mathbf{x}}_i$, so for any j,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{x}}_i \rangle = \sum_{k=1}^{a} \mathbf{\Pi}(j,k) \cdot \vec{\mathbf{x}}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 $\vec{x}_1, \dots, \vec{x}_n$: original points (d dims.), $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n$: compressed points (m < d dims.), $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection (embedding function)

Compression operation is $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, so for any j,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{\mathbf{x}}_i \rangle = \sum_{k=1}^d \mathbf{\Pi}(j,k) \cdot \vec{\mathbf{x}}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

Points with high cosine similarity have similar random projections.

Computing a length m SimHash signature $SH_1(\vec{x_i}), \ldots, SH_m(\vec{x_i})$ is identical to computing $\tilde{\mathbf{x}}_i = \mathbf{\Pi}\vec{x_i}$ and then taking $sign(\tilde{\mathbf{x}}_i)$.

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\frac{\epsilon^2}{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

Applying a random matrix Π to any vector \vec{y} preserves \vec{y} 's norm with high probability.

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

Applying a random matrix Π to any vector \vec{y} preserves \vec{y} 's norm with high probability.

• Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 < \|\Pi\vec{y}\|_2 < (1 + \epsilon) \|\vec{y}\|_2$

Applying a random matrix Π to any vector \vec{y} preserves \vec{y} 's norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- · Can be proven from first principles. Will see next.

Distributional JL Lemma \Longrightarrow **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Distributional JL Lemma \Longrightarrow **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Distributional JL Lemma \Longrightarrow **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \dots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

Distributional JL Lemma \Longrightarrow **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \dots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \dots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$(1 - \epsilon) \|\vec{y}_{ij}\|_{2} \le \|\mathbf{\Pi}\vec{y}_{ij}\|_{2} \le (1 + \epsilon) \|\vec{y}_{ij}\|_{2}$$

$$(1 - \epsilon) \|\vec{y}_{ij}\|_{2}$$

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \dots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$(1 - \epsilon) \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j\|_2 \le \|\mathbf{\Pi}(\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j)\|_2 \le (1 + \epsilon) \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j\|_2$$

$$\|\mathbf{\mathbf{X}}_i - \mathbf{\mathbf{X}}_j\|_2$$

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \dots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$(1 - \epsilon) \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_j\|_2$$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have: $(1 - \epsilon) \|\vec{x}_i - \vec{x}_i\|_2 \leq \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_i\|_2 \leq (1 + \epsilon) \|\vec{x}_i - \vec{x}_i\|_2.$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0,1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability

 $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

$$Pr(||X_i - \hat{Y}_j|| \neq ||X_i - \hat{Y}_j||) \leq \delta'$$
 $Pr(at ||x| + ||X_i - \hat{X}_j|| \neq ||X_i - \hat{X}_j||) \leq (2) \delta'$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0,1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$.

Claim: If we choose Π with i.i.d. $\mathcal{N}(0,1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \Longrightarrow for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

Claim: If we choose Π with i.i.d. $\mathcal{N}(0,1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \Longrightarrow for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0,1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \Longrightarrow for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right)$$

DISTRIBUTIONAL JL ⇒ JL

Claim: If we choose Π with i.i.d. $\mathcal{N}(0,1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \Longrightarrow for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right)$$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0,1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_i\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_i\|_2 \le (1 + \epsilon) \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_i\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. If for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$\underline{m} = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_i\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_i\|_2 \le (1 + \epsilon) \|\vec{\mathbf{x}}_i - \vec{\mathbf{x}}_i\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \Longrightarrow for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Yields the JL lemma.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{V} \in \mathbb{R}^d$, with probability $> 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

· Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1 + \epsilon) \|\vec{y}\|_2$$

- · Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^d \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $g_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

• Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.

• For any
$$\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$$
 where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.

 $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

What is the distribution of $\tilde{\mathbf{y}}(j)$?

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{\mathbf{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

What is the distribution of $\tilde{y}(j)$? Also Gaussian!

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{a} \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_{i} \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \underline{\vec{\mathbf{y}}(i)^{2}}).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus,
$$\tilde{\mathbf{y}}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \vec{y}(1)^2 + \vec{y}(2)^2 + \dots + \vec{y}(d)^2)$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{a} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus,
$$\tilde{\mathbf{y}}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2)$$

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{a} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$.

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$. I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

Letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:

$$\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \vec{\mathbf{y}}(i) \sim \mathcal{N}(0, \vec{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$. I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

Stability is another explanation for the central limit theorem.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right]$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{y} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$

$$= \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$

$$= \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$
$$= \sum_{j=1}^m \frac{\|\vec{y}\|_2^2}{m}$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \|\vec{\mathbf{y}}\|_{2}^{2}$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \|\vec{\mathbf{y}}\|_{2}^{2}$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\vec{\mathbf{y}}\|_{2}^{2}}{m} = \|\vec{\mathbf{y}}\|_{2}^{2}$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

How is $\|\tilde{\mathbf{y}}\|_2^2$ distributed? Does it concentrate?

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\boldsymbol{\tilde{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m) \text{ and } \mathbb{E}[\|\boldsymbol{\tilde{y}}\|_2^2] = \|\vec{y}\|_2^2$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(i)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
$$(1 - \epsilon) \|\vec{\mathbf{y}}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|\vec{\mathbf{y}}\|_2^2.$$

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
$$(1 - \epsilon)\|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon)\|\vec{y}\|_2^2.$$

Gives the distributional JL Lemma and thus the classic JL Lemma!

- For any point a in A, $\langle a, w \rangle \ge c + m$
- For any point b in B $\langle b, w \rangle \leq c m$.
- Assume all vectors have unit norm.

Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.

- For any point a in A, $\langle a, w \rangle \ge c + m$
- For any point b in B $\langle b, w \rangle \leq c m$.
- Assume all vectors have unit norm.

JL Lemma implies that after projection into $O\left(\frac{\log n}{m^2}\right)$ dimensions, still have $\langle \tilde{\mathbf{a}}, \tilde{\mathbf{w}} \rangle \geq c + m/4$ and $\langle \tilde{\mathbf{b}}, \tilde{\mathbf{w}} \rangle \leq c - m/4$.

Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.

- For any point a in A, $\langle a, w \rangle \ge c + m$
- For any point b in B $\langle b, w \rangle \leq c m$.
- Assume all vectors have unit norm.

JL Lemma implies that after projection into $O\left(\frac{\log n}{m^2}\right)$ dimensions, still have $\langle \tilde{\mathbf{a}}, \tilde{\mathbf{w}} \rangle \geq c + m/4$ and $\langle \tilde{\mathbf{b}}, \tilde{\mathbf{w}} \rangle \leq c - m/4$.

Upshot: Can random project and run SVM (much more efficiently) in the lower dimensional space to find separator $\tilde{\mathbf{w}}$.

Questions?