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LOGISTICS

- Problem Set 2 is due Sunday 3/8.

- Midterm on Thursday, 3/12. Will cover material through
today“

- | have posted a study guide and practice questions on the
course schedule.

- Next Tuesday | can’t do office hours after class. | will hold
them before class on Tuesday (10:00am - 11:15am) and after
class on Thursday (12:45pm-2:00pm).
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- Finished up Count-Min Sketch and Frequent Items.

- Applications and examples of dimensionality reduction in
data science (PCA, LSA, autoencoders, etc.)

- Low-distortion embeddings and some simple cases of when
no-distortion embeddings are possible.



SUMMARY

Last Class: Dimensionality Reduction

- Finished up Count-Min Sketch and Frequent Items.
- Applications and examples of dimensionality reduction in
data science (PCA, LSA, autoencoders, etc.)

- Low-distortion embeddings and some simple cases of when
no-distortion embeddings are possible.

The Johnson-Lindenstrauss Lemma.

- Any data set can be embedded with low distortion into
low-dimensional space.

- Prove the JL Lemma.

- Discuss algorithmic considerations, connections to other
methods (SimHash), etc.



LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given X;, ..., X, € RY distance
function D, and error parameter e > 0, find X,...,X, € R"
(where m < d) and distance function D such that for all
I,j€[n]:

(1 D, F) < D%, %) < (1 + )D(F, %).



LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given X;, ..., X, € RY distance
function D, and error parameter e > 0, find X,...,X, € R"
(where m < d) and distance function D such that for all
I,j€[n]:

(/I - E)D(;,,)?}) < 5(5’(/15’(}) < (lI + 6)D()_(Iv)_(})
Euclidean Low Distortion Embedding: Given X;, ..., X, € R?

and error parameter e > 0, find %y,...,%, € R" (where m < d)
such that for all i,j € [n]:

(1= )lIXi = Xjll2 < 1% — Xll2 < (1 + €)X = Xl|2.

We will primarily focus on this restricted notion in this class.



LOW DISTORTION EMBEDDING

Euclidean Low Distortion Embedding: Given X;, ..., X, € R?
and error parameter e > 0, find %4, ...,%, € R™ (where m < d)
such that for all i,j € [n]:

(1= )lIXi = Xjll2 < 1% — Xll2 < (1 + €)X = Xl|2.

d-dimensional space m-dimensional space
P (for m << d)
o | ¢
® 0
g o
[
-
||xi —x,-||2

U -5,



EMBEDDING WITH ASSUMPTIONS

Assume that Xy, ..., X, all lie on the 15 axis in RY.

Tl o8 =X
v

[X'\ (0] 1% cooy ooe

Set m =1and X; = X;(1) (i.e,, X is just a single number).

% =Xl = 3/ IG(1) = XD = K1) = XD = 11X = Xll2-

- An embedding with no distortion from any d into m = 1.



EMBEDDING WITH ASSUMPTIONS

Assume that X;, ..., X, all lie on the unit circle in R2.

o

X1 X,
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- Admits a low-distortion embedding to 1 dimension by letting
Xi = 0(X).

- Does it admit a low-distortion Euclidean embedding?
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EMBEDDING WITH ASSUMPTIONS

Assume that X;, ..., X, all lie on the unit circle in R2.

X1 X

% KR %

- Admits a low-distortion embedding to 1 dimension by letting
Xi = 0(X).

- Does it admit a low-distortion Euclidean embedding? No! Send
me a proof on Piazza for 3 bonus points on Problem Set 2.
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Another easy case: Assume that Xi, ..., X, lie in any k-dimensional
subspace V of RY.
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subspace V of RY.

- Let i, Vb, ...,V be an orthonormal basis for V and let V e R9*k be
the matrix with these vectors as its columns.
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Another easy case: Assume that Xi, ..., X, lie in any k-dimensional
subspace V of RY.
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- Let i, Vb, ...,V be an orthonormal basis for V and let V e R9*k be

the matrix with these vectors as its columns.



EMBEDDING WITH ASSUMPTIONS

Another easy case: Assume that Xi, ..., X, lie in any k-dimensional
subspace V of RY.

ENUIN
L% g

- Let i, Vb, ...,V be an orthonormal basis for V and let V e R9*k be
the matrix with these vectors as its columns.

- If we set X; € R* to X; = V'X; we have:

1% = %ill2 = INT(X; = X))ll2 = [I1X; — Xl



EMBEDDING WITH ASSUMPTIONS

Another easy case: Assume that Xi, ..., X, lie in any k-dimensional
subspace V of RY.

- Let i, Vb, ...,V be an orthonormal basis for V and let V e R9*k be
the matrix with these vectors as its columns.

- If we set X; € R* to X; = V'X; we have:
1% = Killa = IV = %)l = 1% = Xll2-

+ An embedding with no distortion from any d into m = k.



EMBEDDING WITH ASSUMPTIONS

Another easy case: Assume that Xi, ..., X, lie in any k-dimensional
subspace V of RY.
\ Yl % a
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- Let V4, Vb, ...,V be an orthonormal ba5|s fory and letV € RIxk be
the matrix Wlth these vectors as its columns. ; %U

- If we set X; € R* to X; = V'X; we have:
5% =Xl = IVI(X - )l = 11X — Xjlla.
+ An embedding with no distortion from any d into m = k.

- VI :RY — R is a linear map giving our embedding.



EMBEDDING WITH NO ASSUMPTIONS

What about when we don’t make any assumptions on
X1,...,Xn. lLe, they can be scattered arbitrarily around
d-dimensional space?

- Can we find a no-distortion embedding into m <« d
dimensions?
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What about when we don’t make any assumptions on
X1,...,Xn. lLe, they can be scattered arbitrarily around
d-dimensional space?

- Can we find a no-distortion embedding into m <« d
dimensions? No. Require m = d.

- Can we find an e-distortion embedding into m <« d
dimensions for e > 07
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EMBEDDING WITH NO ASSUMPTIONS

What about when we don’t make any assumptions on
X1,...,Xn. lLe, they can be scattered arbitrarily around
d-dimensional space?

- Can we find a no-distortion embedding into m <« d
dimensions? No. Require m = d.

- Can we find an e-distortion embedding into m <« d
dimensions for e > 0? Yes! Always, with m depending on e.

Foralli,j: (1= e)lIX; = Xll2 < 1% = Xill2 < (T + ) [IX; — Xill2-



THE JOHNSON-LINDENSTRAUSS LEMMA

\/T
Johnson-Lindenstrauss Lemma: For any set of points
X1,..., %, € R?and e > 0 there exists a linear map M : RY — R™

such thatm =0 (log”) and letting %; = NX::

Foralli,j: (1= elX —Xll2 < 1% —Xjll2 < (1+ €)[IXi = Xl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.




THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., %, € R?and e > 0 there exists a linear map M : RY — R™
such thatm =0 (log”) and letting %; = NX::

Foralli,j: (1= elX —Xll2 < 1% —Xjll2 < (1+ €)[IXi = Xl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, e = .05, and n = 100, 000, m = 6600.



THE JOHNSON-LINDENSTRAUSS LEMMA
R

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., %, € R?and e > 0 there exists a linear map M : RY — R™
such thatm =0 (log”) and letting %; = NX::

Foralli,j: (1= elX —Xll2 < 1% —Xjll2 < (1+ €)[IXi = Xl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, e = .05, and n = 100, 000, m = 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.



RANDOM PROJECTION

Forany Xi,...,X, and I € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX;:

Foralli,j: (1= e)lIXi — Xilla < [1X — X[l < (1 + €)lI1X; — |2

mxd dx1 mx1
01 -12 34 67 10 —.49..
—45_ 7 14 18 —65 .76..
x| =%
n
7
/
random linear transformation \\
(random projection) compressed output point
(low dimensions)
logn
m=0(=£%)
€ -
input point
(high dimensions)

10



RANDOM PROJECTION

Forany Xi,...,X, and I € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX;:

Foralli,j: (1= OI% =%l < 1% — Kl < (1 + K =K

mxd dx1 mx1
01 -12 34 67 10 —.49..
—45_ 7 14 18 —65 .76..
x| =%
n
7
/
random linear transformation \\
(random projection) compressed output point
(low dimensions)
logn
m=0(=£%)
€ -
input point
(high dimensions)

- Mis known as a random projection. It is a random linear function,
mapping length d vectors to length m vectors.
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RANDOM PROJECTION

Forany Xi,...,X, and I € R™<9 with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = MX;:

Foralli,j: (1= OI% =%l < 1% — Kl < (1 + K =K

mxd dx1 mx1
01 -12 34 67 10 —.49..
—45_ 7 14 18 —65 .76..
x| =%
n
7
/
random linear transformation \\
(random projection) compressed output point
(low dimensions)
logn
m=0(=£%)
€ -
input point
(high dimensions)

- Mis known as a random projection. It is a random linear function,
mapping length d vectors to length m vectors.

- Mis data oblivious. Stark contrast to methods like PCA.
10



ALGORITHMIC CONSIDERATIONS

- Many alternative constructions: 41 entries, sparse (most
entries 0), Fourier structured (Problem Set 2), etc. = more
efficient computation of X; = MNX..
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X1,...,Xp can be computed in a stream with little memory.

- Memory needed is just O(d + nm) vs. O(nd) to store the full
data set.
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- Compression can also be easily performed in parallel on
different servers.



ALGORITHMIC CONSIDERATIONS

- Many alternative constructions: 41 entries, sparse (most
entries 0), Fourier structured (Problem Set 2), etc. = more
efficient computation of X; = MNX..

- Data oblivious property means that once M is chosen,
X1,...,Xp can be computed in a stream with little memory.

- Memory needed is just O(d + nm) vs. O(nd) to store the full
data set.

- Compression can also be easily performed in parallel on
different servers.

- When new data points are added, can be easily compressed,
without updating existing points.



CONNECTION TO SIMHASH

-

Compression operation is X; = MX;, so for any j,

X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (m < d
dims.), M € R™*9: random projection (embedding function)




CONNECTION TO SIMHASH

Compression operation is X; = MX;, so for any j,

M(j) is a vector with independent random Gaussian entries.

mxd dx1 mx1

01 -12 34 67 .10 —.49..
—45 7 14 18 — 65 .76.. *

Xi =
n -

random linear transformation

(random projection) * | compressed output point

. (low dimensions)

1
meo0 ( ogzn) :
€
input point

[ | (high dimensions)

X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (m < d
dims.), M € R™*9: random projection (embedding function)




CONNECTION TO SIMHASH

Compression operation is X; = MX;, so for any j,
d
%(j) = (NG), %) = D> N(, R) - Xi(k).
k=1

M(j) is a vector with independent random Gaussian entries.

3

X4
X2

A
A 4

v

X1,...,Xn: original points (d dims.), Xq,...,%n: compressed points (m < d
dims.), 0 € R™*9: random projection (embedding function)
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CONNECTION TO SIMHASH

Compression operation is X; = MX;, so for any j,

M(j) is a vector with independent random Gaussian entries.

A

(D) _ B0,

; Il "~ [
< T —
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X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (m < d

dims.), M € R™*9: random projection (embedding function) 12
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Compression operation is X; = MX;, so for any j,

3

v
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CONNECTION TO SIMHASH

Compression operation is X; = MX;, so for any j,

M(j) is a vector with independent random Gaussian entries.

3

A

X1,...,Xn: original points (d dims.), Xq,...,%n: compressed points (m < d
dims.), 0 € R™*9: random projection (embedding function)




CONNECTION TO SIMHASH

Compression operation is X; = MX;, so for any j,

d
%i(j) = (NG, %) = Y N(j, k) - %i(R)
k=1
M(j) is a vector with independent random Gaussian entries.
o
A XL

SimHash Signature [ ]

A

Points with high cosine
similarity have similar
random projections.

Computing a length m SimHash signature SH1(X;), ..., SHn(X;) is
identical to computing X; = MX; and then taking sign(X;).



DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*%_have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O bgiﬁ) then
, with probability >1—§

(1=l < INYll2 < (1+ &)I¥l2

N e R™*9: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob. 13
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Applying a random matrix I to any vector ¥ preserves y's norm with
high probability.
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The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (bgiﬁ) then
, with probability >1—§

(1=l < INYll2 < (1+ &)I¥l2

Applying a random matrix M to any vector y preserves y’s norm with

high probability.

- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.
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dimension, e: embedding error, §: embedding failure prob. 13




DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (bgiﬁ) then
, with probability >1—§

(1=l < INYll2 < (1+ &)I¥l2

Applying a random matrix M to any vector y preserves y’s norm with

high probability.

- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

- Can be proven from first principles. Will see next.

N e R™*9: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob. 13




DISTRIBUTIONAL JL — JL

Distributional JL Lemma == JL Lemma: Distributional JL show that

a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.
X1,...,%n: original points, %1, . .., Xn: compressed points, M € R™%9: random

projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 14
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DISTRIBUTIONAL JL — JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.

Since M is these are the same thing!

Proof: Given Xi,...,X,, define (0) vectors y; where yj; = Xj — X.

X1,...,%n: original points, %1, . .., Xn: compressed points, M € R™%9: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 14




DISTRIBUTIONAL JL — JL

Distributional JL Lemma == JL Lemma: Distributional JL show that

a random projection M preserves the of any y. The main JL
Lemma says that I preserves between vectors.

Since M is these are the same thing!

Proof: Given Xi,...,X,, define (0) vectors y; where yj; = Xj — X.
b

X4
X2

Xy

X1,...,%n: original points, %1, . .., Xn: compressed points, M € R™%9: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob.
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DISTRIBUTIONAL JL — JL

Distributional JL Lemma == JL Lemma: Distributional JL show that

a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.

Since M is these are the same thing!

Proof: Given Xi,...,X,, define (0) vectors y; where yj; = Xj — X.

- If we choose Mwithm =0 (logel/‘s), for each yj; with probability
>1— 6 we have:

(- 6)H))7u|\z < Myl < (1 + ) I¥sll2

N -XS

X1, ..., %n: original points, X, . .., Xn: compressed points, I € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 14
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Distributional JL Lemma == JL Lemma: Distributional JL show that

a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.
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Proof: Given Xi,...,X,, define (0) vectors y; where yj; = Xj — X.
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a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.

Since M is these are the same thing!

Proof: Given Xi,...,X,, define (0) vectors y; where yj; = Xj — X.

- If we choose Mwithm =0 (logel/‘s), for each yj; with probability
>1— 6 we have:

(1= alIXi = X[l < | Il < (1 + &)X =%l

X1, ..., %n: original points, X, . .., Xn: compressed points, I € R™*4: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, §: embedding failure prob. 14




DISTRIBUTIONAL JL — JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=0 (log /¢ )) letting X; = MX;, for each pair X, X; with probability

>1—¢" we have: O _\%\Q

(1= OlIXi = X[l < 1% = Xlla < (1 + €)X = Xl|2- cr

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, 6: embedding failure prob.




DISTRIBUTIONAL JL — JL

Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=0 (log /¢ )) letting X; = MX;, for each pair X, X; with probability
>1— 6" we have:

(1= X = Xlla < [IX; = Xjll2 < (T+ lIXi = Xjl2-

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, 6: embedding failure prob.




DISTRIBUTIONAL JL — JL

—

T Claim: If we choose M with i.i.d. N(0,1/m) entries and g SQ\lWa )
m=0 (log /¢ )) letting X; = MX;, for each pair X, X; with probability
>1— 6" we have:

(1= X = Xlla < [IX; = Xjll2 < (T+ lIXi = Xjl2-

Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

@f (%. \’T% h%l X) B C@ |
Pr <c§§ \ngg% ane, W\%\\ ¥ % -><)[|> < <m>£

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, 6: embedding failure prob.
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Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=0 (log /¢ )) letting X; = MX;, for each pair X, X; with probability
>1— 6" we have:

(1= X = Xlla < [IX; = Xjll2 < (T+ lIXi = Xjl2-

Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved. > - <S

Apply the claim with &' = §/(5).
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projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, 6: embedding failure prob.
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Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=0 (log /¢ )) letting X; = MX;, for each pair X, X; with probability
>1— 6" we have:

(1= X = Xlla < [IX; = Xjll2 < (T+ lIXi = Xjl2-

Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

Apply the claim with ¢’ = §/(}). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, 6: embedding failure prob.
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Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=0 (log /¢ )) letting X; = MX;, for each pair X, X; with probability
>1— 6" we have:
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Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

Apply the claim with ¢’ = §/(}). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 6.

o(24)

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
projection matrix. d: original dimension. m: compressed dimension, e em-
bedding error, 6: embedding failure prob.
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Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=0 (log /¢ )) letting X; = MX;, for each pair X, X; with probability
>1— 6" we have:

(1= X = Xlla < [IX; = Xjll2 < (T+ lIXi = Xjl2-

Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

Apply the claim with ¢’ = §/(}). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 6.

0 <1og(;/y)> <tog(< )/6))

X1,..., % original points, %1, .. .,%: compressed points, M € R™*9: random
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Claim: If we choose M with i.i.d. A/(0,1/m) entries and
m=0 (log /¢ )) letting X; = MX;, for each pair X, X; with probability
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Apply the claim with ¢’ = §/(}). = form =0 (%) all
pairwise distances are preserved with probability > 1 — 4.

(51 o) o) . ()

Yields the JL lemma.
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Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O (log(€1/5 ) then for any
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(1=l < INYll2 < (1+ &)I¥l2

¥ € RY: arbitrary vector, § € R™: compressed vector, M € R™*9: random

projection. d: original dim. m: compressed dim, e: error, §: failure prob. 16
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- Let y denote Ny and let N(j) denote the ;™ row of M.
+ Forany j, () = (N().5) = = X1, & - ¥(i) where g ~ A(0,1).

¥ € RY: arbitrary vector, §j € R™: compressed vector, 1 € R™*%: random
projection mapping ¥ — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 17
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% N (O | g(\ 3L> —— f . \
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9i g y@)
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Letting y = Ny, we have y(j) = (N(j), V) and:

d
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So far: Letting M € RY*™ have each entry chosen i.i.d. as N'(0,1/m),
forany y € RY, letting y = My

Y() ~ N0, 1713/ m).
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So far: Letting M € RY*™ have each entry chosen i.i.d. as
N(0,1), for any y € RY letting y = Ny:

Y(j) ~ N (0, [¥l15/m) and E[|I§1I3] = [I¥1I3

1
T .

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): jt" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.
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freedom (a sum of m squared independent Gaussians)

filz) X

0.5

0.4

0.3

folE ol ol ol
| L L L L

0.0
0

¥ € R® arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): jt" row of N, d: original dimension. m: com-
pressed dimension, e embedding error, 6: embedding failure prob.

20




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
N(0,1), for any y € RY letting y = Ny:
Y(j) ~ N(0, [[¥13/m) and E[[I3] = [I¥]12

1915 = X212 9(7)* a
(a sum of m squared independent Gaussians)

1
T .

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr|Z — EZ| > eEZ] < 2e~™</8,
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(a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr|Z — EZ| > eEZ] < 2e~™</8,

If we setm =0 (M) with probability 71— 0(e~08(1/9)) > 1 — 4
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(1= IVIIZ < 113 < (1+ e)IF3.
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So far: Letting M € RY*™ have each entry chosen i.i.d. as
ﬁ -N(0,1), for any ¥ € RY letting § = Ny:

y(j) ~ N (0, |IlI3/m) and E[[[§]13] = (VI3
19112 = =i, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr|Z — EZ| > eEZ] < 2e~™</8,

If we setm =0 (M) with probability 71— 0(e~08(1/9)) > 1 — 4

(1= IVIIZ < 113 < (1+ e)IF3.

Gives the distributional JL Lemma and thus the classic JL Lemma!
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EXAMPLE APPLICATION: SVM

Support Vector Machines: A classic ML algorithm, where data is
classified with a hyperplane.
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EXAMPLE APPLICATION: SVM

Support Vector Machines: A classic ML algorithm, where data is
classified with a hyperplane.

Class A ° Separating
Hyperplane - Forany pointain A,

(a,w) >c+m

+ Forany pointbin B
Class B <b7 W> <c—m.

- Assume all vectors
have unit norm.

margin m

logn
m2

JL Lemma implies that after projection into O (
have (a,w) > c+ m/4 and (b,w) < c—m/4.

) dimensions, still

Upshot: Can random project and run SVM (much more efficiently) in

the lower dimensional space to find separator w.
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Questions?
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