COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 10
LOGISTICS

- Problem Set 2 is due Sunday 3/8.
- Midterm on Thursday, 3/12. Will cover material through today.
- I have posted a study guide and practice questions on the course schedule.
- Next Tuesday I can’t do office hours after class. I will hold them before class on Tuesday (10:00am - 11:15am) and after class on Thursday (12:45pm-2:00pm).
Last Class: Dimensionality Reduction
Last Class: Dimensionality Reduction

- Finished up Count-Min Sketch and Frequent Items.
- Applications and examples of dimensionality reduction in data science (PCA, LSA, autoencoders, etc.)
- Low-distortion embeddings and some simple cases of when no-distortion embeddings are possible.
SUMMARY

Last Class: Dimensionality Reduction

- Finished up Count-Min Sketch and Frequent Items.
- Applications and examples of dimensionality reduction in data science (PCA, LSA, autoencoders, etc.)
- Low-distortion embeddings and some simple cases of when no-distortion embeddings are possible.

The Johnson-Lindenstrauss Lemma.

- Any data set can be embedded with low distortion into low-dimensional space.
- Prove the JL Lemma.
- Discuss algorithmic considerations, connections to other methods (SimHash), etc.
Low Distortion Embedding: Given \(\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^d \), distance function \(D \), and error parameter \(\epsilon \geq 0 \), find \(\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m \) (where \(m \ll d \)) and distance function \(\tilde{D} \) such that for all \(i, j \in [n] \):

\[
(1 - \epsilon)D(\tilde{x}_i, \tilde{x}_j) \leq \tilde{D}(\tilde{x}_i, \tilde{x}_j) \leq (1 + \epsilon)D(\tilde{x}_i, \tilde{x}_j).
\]
Low Distortion Embedding: Given $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^d$, distance function D, and error parameter $\epsilon \geq 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) and distance function \tilde{D} such that for all $i, j \in [n]$:

$$(1 - \epsilon)D(\tilde{x}_i, \tilde{x}_j) \leq \tilde{D}(\tilde{x}_i, \tilde{x}_j) \leq (1 + \epsilon)D(\tilde{x}_i, \tilde{x}_j).$$

Euclidean Low Distortion Embedding: Given $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^d$ and error parameter $\epsilon \geq 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) such that for all $i, j \in [n]$:

$$(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.$$
Euclidean Low Distortion Embedding: Given $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^d$ and error parameter $\epsilon \geq 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) such that for all $i, j \in [n]$:

$$(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.$$
Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ all lie on the 1st axis in \mathbb{R}^d.

Set $m = 1$ and $\tilde{x}_i = \bar{x}_i(1)$ (i.e., \tilde{x}_i is just a single number).

- $\|\tilde{x}_i - \tilde{x}_j\|_2 = \sqrt{[\bar{x}_i(1) - \bar{x}_j(1)]^2} = |\bar{x}_i(1) - \bar{x}_j(1)| = \|\bar{x}_i - \bar{x}_j\|_2$.
- An embedding with no distortion from any d into $m = 1$.
Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ all lie on the unit circle in \mathbb{R}^2.

- Admits a low-distortion embedding to 1 dimension by letting $\tilde{x}_i = \theta(\tilde{x}_i)$.
- Does it admit a low-distortion Euclidean embedding?
Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ all lie on the unit circle in \mathbb{R}^2.

- Admits a low-distortion embedding to 1 dimension by letting $\tilde{x}_i = \theta(\tilde{x}_i)$.
- Does it admit a low-distortion Euclidean embedding?
Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ all lie on the unit circle in \mathbb{R}^2.

- Admits a low-distortion embedding to 1 dimension by letting $\tilde{x}_i = \theta(\bar{x}_i)$.
- Does it admit a low-distortion Euclidean embedding? No! Send me a proof on Piazza for 3 bonus points on Problem Set 2.
Another easy case: Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d.
Another easy case: Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d.

- Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
Another easy case: Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d.

Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
Another easy case: Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d.

- Let $\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_k$ be an orthonormal basis for \mathcal{V} and let $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- If we set $\tilde{x}_i \in \mathbb{R}^k$ to $\tilde{x}_i = V^T \tilde{x}_i$ we have:

$$
\|\tilde{x}_i - \tilde{x}_j\|_2 = \|V^T (\tilde{x}_i - \tilde{x}_j)\|_2 = \|\tilde{x}_i - \tilde{x}_j\|_2.
$$
Another easy case: Assume that $\tilde{x}_1, \ldots, \tilde{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d.

- Let $\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_k$ be an orthonormal basis for \mathcal{V} and let $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- If we set $\tilde{x}_i \in \mathbb{R}^k$ to $\tilde{x}_i = V^T \tilde{x}_i$ we have:
 $$\|\tilde{x}_i - \tilde{x}_j\|_2 = \|V^T(\tilde{x}_i - \tilde{x}_j)\|_2 = \|\tilde{x}_i - \tilde{x}_j\|_2.$$
- An embedding with no distortion from any d into $m = k$.

Another easy case: Assume that \(\tilde{x}_1, \ldots, \tilde{x}_n \) lie in any \(k \)-dimensional subspace \(\mathcal{V} \) of \(\mathbb{R}^d \).

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix} \rightarrow \begin{bmatrix}
 \tilde{x}_1 \\
 \tilde{x}_2 \\
 \vdots \\
 \tilde{x}_n
\end{bmatrix}
\]

- Let \(\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_k \) be an orthonormal basis for \(\mathcal{V} \) and let \(V \in \mathbb{R}^{d \times k} \) be the matrix with these vectors as its columns.

- If we set \(\tilde{x}_i \in \mathbb{R}^k \) to \(\tilde{x}_i = V^T \tilde{x}_i \) we have:

\[
\| \tilde{x}_i - \tilde{x}_j \|_2 = \| V^T (\tilde{x}_i - \tilde{x}_j) \|_2 = \| \tilde{x}_i - \tilde{x}_j \|_2.
\]

- An embedding with no distortion from any \(d \) into \(m = k \).

- \(V^T : \mathbb{R}^d \rightarrow \mathbb{R}^k \) is a linear map giving our embedding.
What about when we don’t make any assumptions on $\tilde{x}_1, \ldots, \tilde{x}_n$. I.e., they can be scattered arbitrarily around d-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions?
What about when we don’t make any assumptions on $\tilde{x}_1, \ldots, \tilde{x}_n$. I.e., they can be scattered arbitrarily around d-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions? **No. Require $m = d$.**
What about when we don’t make any assumptions on $\tilde{x}_1, \ldots, \tilde{x}_n$. I.e., they can be scattered arbitrarily around d-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions? No. Require $m = d$.
- Can we find an ϵ-distortion embedding into $m \ll d$ dimensions for $\epsilon > 0$?

For all i, j:

\[(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.\]
What about when we don’t make any assumptions on $\tilde{x}_1, \ldots, \tilde{x}_n$. I.e., they can be scattered arbitrarily around d-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions? No. Require $m = d$.
- Can we find an ϵ-distortion embedding into $m \ll d$ dimensions for $\epsilon > 0$? Yes! Always, with m depending on ϵ.

For all $i, j : (1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2$.
THE JOHNSON-LINDENSTRAUSS LEMMA

\[\sqrt{T} \]

Johnson-Lindenstrauss Lemma: For any set of points \(\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^d \) and \(\epsilon > 0 \) there exists a linear map \(\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^m \) such that \(m = O \left(\frac{\log n}{\epsilon^2} \right) \) and letting \(\tilde{x}_i = \Pi \tilde{x}_i \):

For all \(i, j \):

\[
(1 - \epsilon) \| \tilde{x}_i - \tilde{x}_j \|_2 \leq \| \tilde{x}_i - \tilde{x}_j \|_2 \leq (1 + \epsilon) \| \tilde{x}_i - \tilde{x}_j \|_2.
\]

Further, if \(\Pi \in \mathbb{R}^{m \times d} \) has each entry chosen i.i.d. from \(\mathcal{N}(0, 1/m) \), it satisfies the guarantee with high probability.
Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \Pi \vec{x}_i$:

For all $i, j : (1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

For $d = 1$ trillion, $\epsilon = .05$, and $n = 100,000$, $m \approx 6600$.
Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\Pi : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O \left(\frac{\log n}{\epsilon^2} \right)$ and letting $\tilde{x}_i = \Pi \vec{x}_i$:

For all $i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$.

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

For $d = 1$ trillion, $\epsilon = .05$, and $n = 100,000$, $m \approx 6600$.

Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.
For any \(\mathbf{x}_1, \ldots, \mathbf{x}_n \) and \(\Pi \in \mathbb{R}^{m \times d} \) with each entry chosen i.i.d. from \(\mathcal{N}(0, 1/m) \), with high probability, letting \(\tilde{\mathbf{x}}_i = \Pi \mathbf{x}_i \):

For all \(i, j \) :

\[
(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2 \leq \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \leq (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2.
\]

\[
m = O\left(\frac{\log n}{\epsilon^2}\right)
\]
RANDOM PROJECTION

For any $\tilde{x}_1, \ldots, \tilde{x}_n$ and $\Pi \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{x}_i = \Pi \tilde{x}_i$:

For all i, j:

$$(1 - \epsilon) \| \tilde{x}_i - \tilde{x}_j \|_2 \leq \| \tilde{x}_i - \tilde{x}_j \|_2 \leq (1 + \epsilon) \| \tilde{x}_i - \tilde{x}_j \|_2.$$

- Π is known as a random projection. It is a random linear function, mapping length d vectors to length m vectors.
For any \(\bar{x}_1, \ldots, \bar{x}_n \) and \(\Pi \in \mathbb{R}^{m \times d} \) with each entry chosen i.i.d. from \(\mathcal{N}(0, 1/m) \), with high probability, letting \(\tilde{x}_i = \Pi \bar{x}_i \):

For all \(i, j \) :

\[
(1 - \epsilon) \| \bar{x}_i - \bar{x}_j \|_2 \leq \| \tilde{x}_i - \tilde{x}_j \|_2 \leq (1 + \epsilon) \| \bar{x}_i - \bar{x}_j \|_2.
\]

\(m = O \left(\frac{\log n}{\epsilon^2} \right) \)

- \(\Pi \) is known as a random projection. It is a random linear function, mapping length \(d \) vectors to length \(m \) vectors.
- \(\Pi \) is data oblivious. Stark contrast to methods like PCA.
ALGORITHMIC CONSIDERATIONS

- Many alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \implies more efficient computation of $\tilde{x}_i = \Pi \tilde{x}_i$.
• Many alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \implies more efficient computation of $\tilde{x}_i = \Pi \tilde{x}_i$.

• Data oblivious property means that once Π is chosen, $\tilde{x}_1, \ldots, \tilde{x}_n$ can be computed in a stream with little memory.

• Memory needed is just $O(d + nm)$ vs. $O(nd)$ to store the full data set.
ALGORITHMIC CONSIDERATIONS

- Many alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \implies more efficient computation of $\tilde{x}_i = \Pi \tilde{x}_i$.
- Data oblivious property means that once Π is chosen, $\tilde{x}_1, \ldots, \tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just $O(d + nm)$ vs. $O(nd)$ to store the full data set.
- Compression can also be easily performed in parallel on different servers.
ALGORITHMIC CONSIDERATIONS

• Many alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \(\implies \) more efficient computation of \(\tilde{x}_i = \Pi \tilde{x}_i \).

• Data oblivious property means that once \(\Pi \) is chosen, \(\tilde{x}_1, \ldots, \tilde{x}_n \) can be computed in a stream with little memory.

• Memory needed is just \(O(d + nm) \) vs. \(O(nd) \) to store the full data set.

• Compression can also be easily performed in parallel on different servers.

• When new data points are added, can be easily compressed, without updating existing points.
Compression operation is $\tilde{x}_i = \mathbf{p} x_i$, so for any j,

$$\tilde{x}_i(j) = \langle \mathbf{p}(j), \tilde{x}_i \rangle = \sum_{k=1}^{d} \mathbf{p}(j, k) \cdot \tilde{x}_i(k).$$

$\tilde{x}_1, \ldots, \tilde{x}_n$: original points ($d$ dims.), $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points ($m < d$ dims.), $\mathbf{p} \in \mathbb{R}^{m \times d}$: random projection (embedding function)
Compression operation is $\tilde{x}_i = \Pi \vec{x}_i$, so for any j,

$$\tilde{x}_i(j) = \langle \Pi(j), \vec{x}_i \rangle = \sum_{k=1}^{d} \Pi(j, k) \cdot \vec{x}_i(k).$$

$\Pi(j)$ is a vector with independent random Gaussian entries.

$\tilde{x}_1, \ldots, \tilde{x}_n$: original points ($d$ dims.), $\hat{x}_1, \ldots, \hat{x}_n$: compressed points ($m < d$ dims.), $\Pi \in \mathbb{R}^{m \times d}$: random projection (embedding function)
Compression operation is $\tilde{x}_i = \mathbf{P}\vec{x}_i$, so for any j,

$$\tilde{x}_i(j) = \langle \mathbf{p}(j), \vec{x}_i \rangle = \sum_{k=1}^{d} \mathbf{p}(j, k) \cdot \vec{x}_i(k).$$

$\mathbf{p}(j)$ is a vector with independent random Gaussian entries.

$\vec{x}_1, \ldots, \vec{x}_n$: original points ($d$ dims.), $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points ($m < d$ dims.), $\mathbf{P} \in \mathbb{R}^{m \times d}$: random projection (embedding function)
Compression operation is $\tilde{x}_i = \Pi \tilde{x}_i$, so for any j,

$$\tilde{x}_i(j) = \langle \Pi(j), \tilde{x}_i \rangle = \sum_{k=1}^{d} \Pi(j, k) \cdot \tilde{x}_i(k).$$

$\Pi(j)$ is a vector with independent random Gaussian entries.

$\tilde{x}_1, \ldots, \tilde{x}_n$: original points ($d$ dims.), $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points ($m < d$ dims.), $\Pi \in \mathbb{R}^{m \times d}$: random projection (embedding function)
Compression operation is \(\tilde{x}_i = \Pi \tilde{x}_i \), so for any \(j \),

\[
\tilde{x}_i(j) = \langle \Pi(j), \tilde{x}_i \rangle = \sum_{k=1}^{d} \Pi(j, k) \cdot \tilde{x}_i(k).
\]

\(\Pi(j) \) is a vector with independent random Gaussian entries.

\(\tilde{x}_1, \ldots, \tilde{x}_n \): original points (\(d \) dims.), \(\tilde{x}_1, \ldots, \tilde{x}_n \): compressed points (\(m < d \) dims.), \(\Pi \in \mathbb{R}^{m \times d} \): random projection (embedding function)
Compression operation is \(\tilde{x}_i = \Pi \tilde{x}_i \), so for any \(j \),

\[
\tilde{x}_i(j) = \langle \Pi(j), \tilde{x}_i \rangle = \sum_{k=1}^{d} \Pi(j,k) \cdot \tilde{x}_i(k).
\]

\(\Pi(j) \) is a vector with independent random Gaussian entries.
Compression operation is \(\tilde{x}_i = \mathbf{\Pi} \tilde{x}_i \), so for any \(j \),

\[
\tilde{x}_i(j) = \langle \mathbf{\Pi}(j), \tilde{x}_i \rangle = \sum_{k=1}^{d} \mathbf{\Pi}(j, k) \cdot \tilde{x}_i(k).
\]

\(\mathbf{\Pi}(j) \) is a vector with independent random Gaussian entries.

\(\tilde{x}_1, \ldots, \tilde{x}_n \): original points \((d \text{ dims.})\), \(\tilde{x}_1, \ldots, \tilde{x}_n \): compressed points \((m < d \text{ dims.})\), \(\mathbf{\Pi} \in \mathbb{R}^{m \times d} \): random projection (embedding function)
Compression operation is $\tilde{x}_i = \Pi \tilde{x}_i$, so for any j,

$$\tilde{x}_i(j) = \langle \Pi(j), \tilde{x}_i \rangle = \sum_{k=1}^{d} \Pi(j, k) \cdot \tilde{x}_i(k).$$

$\Pi(j)$ is a vector with independent random Gaussian entries.

Points with high cosine similarity have similar random projections.

Computing a length m SimHash signature $SH_1(\tilde{x}_i), \ldots, SH_m(\tilde{x}_i)$ is identical to computing $\tilde{x}_i = \Pi \tilde{x}_i$ and then taking $\text{sign}(\tilde{x}_i)$.
The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\mathbf{P} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\tilde{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon)\|\tilde{y}\|_2 \leq \|\mathbf{P}\tilde{y}\|_2 \leq (1 + \epsilon)\|\tilde{y}\|_2$$

$\mathbf{P} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let \(\mathbf{P} \in \mathbb{R}^{m \times d} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \). If we set \(m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right) \), then for any \(\mathbf{y} \in \mathbb{R}^d \), with probability \(\geq 1 - \delta \)

\[
(1 - \epsilon) \| \mathbf{y} \|_2 \leq \| \mathbf{P} \mathbf{y} \|_2 \leq (1 + \epsilon) \| \mathbf{y} \|_2
\]

Applying a random matrix \(\mathbf{P} \) to any vector \(\mathbf{y} \) preserves \(\mathbf{y} \)'s norm with high probability.

\[\mathbf{P} \in \mathbb{R}^{m \times d} \]: random projection matrix. \(d \): original dimension. \(m \): compressed dimension, \(\epsilon \): embedding error, \(\delta \): embedding failure prob.
The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\tilde{\mathbf{y}} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$
(1 - \epsilon)\|\tilde{\mathbf{y}}\|_2 \leq \|\mathbf{\Pi}\tilde{\mathbf{y}}\|_2 \leq (1 + \epsilon)\|\tilde{\mathbf{y}}\|_2
$$

Applying a random matrix $\mathbf{\Pi}$ to any vector $\tilde{\mathbf{y}}$ preserves $\tilde{\mathbf{y}}$'s norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.

$\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\mathbf{P} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, then for any $\tilde{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

\[
(1 - \epsilon)\|\tilde{y}\|_2 \leq \|\mathbf{P}\tilde{y}\|_2 \leq (1 + \epsilon)\|\tilde{y}\|_2
\]

Applying a random matrix \mathbf{P} to any vector \tilde{y} preserves \tilde{y}'s norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- Can be proven from first principles. Will see next.

$\mathbf{P} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

$\bar{x}_1, \ldots, \bar{x}_n$: original points, $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ε: embedding error, δ: embedding failure prob.
Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

$\vec{x}_1, \ldots, \vec{x}_n$: original points, $\tilde{\vec{x}}_1, \ldots, \tilde{\vec{x}}_n$: compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Distributional JL Lemma \Rightarrow JL Lemma: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\tilde{x}_1, \ldots, \tilde{x}_n$, define $\binom{n}{2}$ vectors \tilde{y}_{ij} where $\tilde{y}_{ij} = \tilde{x}_i - \tilde{x}_j$.

$\tilde{x}_1, \ldots, \tilde{x}_n$: original points, $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\tilde{x}_1, \ldots, \tilde{x}_n$, define $\binom{n}{2}$ vectors \tilde{y}_{ij} where $\tilde{y}_{ij} = \tilde{x}_i - \tilde{x}_j$.

x_1, \ldots, x_n: original points, $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
DISTRIBUTIONAL JL \implies JL

Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\tilde{x}_1, \ldots, \tilde{x}_n$, define $\binom{n}{2}$ vectors \tilde{y}_{ij} where $\tilde{y}_{ij} = \tilde{x}_i - \tilde{x}_j$.

- If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \tilde{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$
(1 - \epsilon)\|\tilde{y}_{ij}\|_2 \leq \|\Pi\tilde{y}_{ij}\|_2 \leq (1 + \epsilon)\|\tilde{y}_{ij}\|_2
$$

\[\forall i \neq j\]

\[\tilde{x}_1, \ldots, \tilde{x}_n: \text{original points}, \; \tilde{x}_1, \ldots, \tilde{x}_n: \text{compressed points}, \; \Pi \in \mathbb{R}^{m \times d}: \text{random projection matrix.} \; d: \text{original dimension.} \; m: \text{compressed dimension,} \; \epsilon: \text{embedding error,} \; \delta: \text{embedding failure prob.}\]
DISTRIBUTIONAL JL \[\implies\] JL

Distributional JL Lemma \[\implies\] JL Lemma: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

- If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$
(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|\Pi(\vec{x}_i - \vec{x}_j)\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2
$$

\(\vec{x}_1, \ldots, \vec{x}_n\): original points, $\hat{\vec{x}}_1, \ldots, \hat{\vec{x}}_n$: compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
DISTRIBUTIONAL JL ➔ JL

Distributional JL Lemma ➔ JL Lemma: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

- If we choose Π with $m = O \left(\frac{\log 1/\delta}{\epsilon^2} \right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta$ we have:

$$ (1 - \epsilon) \| \vec{x}_i - \vec{x}_j \|_2 \leq \| \vec{y}_i - \vec{y}_j \|_2 \leq (1 + \epsilon) \| \vec{x}_i - \vec{x}_j \|_2 $$

$\vec{x}_1, \ldots, \vec{x}_n$: original points, $\tilde{\vec{x}}_1, \ldots, \tilde{\vec{x}}_n$: compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and
$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{x}_i = \mathbf{\Pi}x_i$, for each pair \tilde{x}_i, \tilde{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.$$
Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{x}_i = \Pi x_i$, for each pair \tilde{x}_i, \tilde{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

$\tilde{x}_1, \ldots, \tilde{x}_n$: original points, $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Claim: If we choose \(\Pi \) with i.i.d. \(\mathcal{N}(0, 1/m) \) entries and \(m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) \), letting \(\tilde{x}_i = \Pi \hat{x}_i \), for each pair \(\tilde{x}_i, \tilde{x}_j \) with probability \(\geq 1 - \delta' \) we have:

\[
(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.
\]

With what probability are all pairwise distances preserved?

Union bound: With probability \(\geq 1 - \binom{n}{2} \cdot \delta' \) all pairwise distances are preserved.

\[
\Pr(\|\tilde{x}_i - \tilde{x}_j\| \neq \|x_i - x_j\|) \leq \delta^1
\]

\[
\Pr(\text{at least one } \|\tilde{x}_i - \tilde{x}_j\| \neq \|x_i - x_j\|) \leq \binom{n}{2} \delta^1
\]

\(\tilde{x}_1, \ldots, \tilde{x}_n \): original points, \(\hat{x}_1, \ldots, \hat{x}_n \): compressed points, \(\Pi \in \mathbb{R}^{m \times d} \): random projection matrix. \(d \): original dimension. \(m \): compressed dimension, \(\epsilon \): embedding error, \(\delta \): embedding failure prob.
Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2} \right)$, letting $\tilde{x}_i = \mathbf{\Pi} x_i$, for each pair \tilde{x}_i, \tilde{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon) \|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon) \|\tilde{x}_i - \tilde{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta / \binom{n}{2}$.

$\tilde{x}_1, \ldots, \tilde{x}_n$: original points, $\bar{x}_1, \ldots, \bar{x}_n$: compressed points, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Claim: If we choose \(\mathbf{P} \) with i.i.d. \(\mathcal{N}(0, 1/m) \) entries and \(m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) \), letting \(\tilde{x}_i = \mathbf{P}x_i \), for each pair \(\tilde{x}_i, \tilde{x}_j \) with probability \(\geq 1 - \delta' \) we have:

\[
(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.
\]

With what probability are all pairwise distances preserved?

Union bound: With probability \(\geq 1 - \binom{n}{2} \cdot \delta' \) all pairwise distances are preserved.

Apply the claim with \(\delta' = \delta / \binom{n}{2} \). \(\implies \) for \(m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) \), all pairwise distances are preserved with probability \(\geq 1 - \delta \).

\(\tilde{x}_1, \ldots, \tilde{x}_n \): original points, \(\tilde{x}_1, \ldots, \tilde{x}_n \): compressed points, \(\mathbf{P} \in \mathbb{R}^{m \times d} \): random projection matrix. \(d \): original dimension. \(m \): compressed dimension, \(\epsilon \): embedding error, \(\delta \): embedding failure prob.
Claim: If we choose $\mathbf{Π}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{x}_i = \mathbf{Π} \tilde{x}_i$, for each pair \tilde{x}_i, \tilde{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta / \binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$

$\tilde{x}_1, \ldots, \tilde{x}_n$: original points, $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points, $\mathbf{Π} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Claim: If we choose Π with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{x}_i = \Pi \tilde{x}_i$, for each pair \tilde{x}_i, \tilde{x}_j with probability $\geq 1 - \delta'$ we have:

$$(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right)$$

$\tilde{x}_1, \ldots, \tilde{x}_n$: original points, $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Claim: If we choose \(\mathbf{\Pi} \) with i.i.d. \(\mathcal{N}(0, 1/m) \) entries and \(m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) \), letting \(\tilde{x}_i = \mathbf{\Pi} \tilde{X}_i \), for each pair \(\tilde{x}_i, \tilde{x}_j \) with probability \(\geq 1 - \delta' \) we have:

\[
(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.
\]

With what probability are all pairwise distances preserved?

Union bound: With probability \(\geq 1 - \binom{n}{2} \cdot \delta' \) all pairwise distances are preserved.

Apply the claim with \(\delta' = \delta / \binom{n}{2} \). \(\implies \) for \(m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) \), all pairwise distances are preserved with probability \(\geq 1 - \delta \).

\[
m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) = O \left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2} \right) = O \left(\frac{\log(n^2/\delta)}{\epsilon^2} \right)
\]

\(\tilde{x}_1, \ldots, \tilde{x}_n: \) original points, \(\tilde{x}_1, \ldots, \tilde{x}_n: \) compressed points, \(\mathbf{\Pi} \in \mathbb{R}^{m \times d}: \) random projection matrix. \(d: \) original dimension. \(m: \) compressed dimension, \(\epsilon: \) embedding error, \(\delta: \) embedding failure prob.
Claim: If we choose \(\mathbf{\Pi} \) with i.i.d. \(\mathcal{N}(0, 1/m) \) entries and
\[m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right), \]
letting \(\tilde{x}_i = \mathbf{\Pi} \tilde{x}_i \), for each pair \(\tilde{x}_i, \tilde{x}_j \) with probability
\(\geq 1 - \delta' \) we have:
\[(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2. \]

With what probability are all pairwise distances preserved?

Union bound: With probability \(\geq 1 - \binom{n}{2} \cdot \delta' \) all pairwise distances are preserved.

Apply the claim with \(\delta' = \delta / \binom{n}{2} \). \(\forall \) for \(m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) \), all pairwise distances are preserved with probability \(\geq 1 - \delta \).

\[m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) = O \left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2} \right) = O \left(\frac{\log(n^2/\delta)}{\epsilon^2} \right) = O \left(\frac{\log(n/\delta)}{\epsilon^2} \right) \]

\(\tilde{x}_1, \ldots, \tilde{x}_n \): original points, \(\tilde{x}_1, \ldots, \tilde{x}_n \): compressed points, \(\mathbf{\Pi} \in \mathbb{R}^{m \times d} \): random projection matrix. \(d \): original dimension. \(m \): compressed dimension, \(\epsilon \): embedding error, \(\delta \): embedding failure prob.
Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and
$m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right)$, letting $\tilde{x}_i = \mathbf{\Pi}x_i$, for each pair \tilde{x}_i, \tilde{x}_j with probability
$\geq 1 - \delta'$ we have:

$$(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta'/(\binom{n}{2})$. \implies for $m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right)$, all
pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O \left(\frac{\log(1/\delta')}{\epsilon^2} \right) = O \left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2} \right) = O \left(\frac{\log(n^2/\delta)}{\epsilon^2} \right) = O \left(\frac{\log(n/\delta)}{\epsilon^2} \right)$$

Yields the JL lemma.
Distributional JL Lemma: Let \(\Pi \in \mathbb{R}^{m \times d} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \). If we set \(m = O\left(\frac{\log(1/\delta)}{\epsilon^2} \right) \), then for any \(\tilde{y} \in \mathbb{R}^d \), with probability \(\geq 1 - \delta \)

\[
(1 - \epsilon) \| \tilde{y} \|_2 \leq \| \Pi \tilde{y} \|_2 \leq (1 + \epsilon) \| \tilde{y} \|_2
\]

\(\tilde{y} \in \mathbb{R}^d \): arbitrary vector, \(\tilde{y} \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection. \(d \): original dim. \(m \): compressed dim, \(\epsilon \): error, \(\delta \): failure prob.
DISTRIBUTIONAL JL PROOF

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\tilde{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon)\|\tilde{y}\|_2 \leq \|\Pi \tilde{y}\|_2 \leq (1 + \epsilon)\|\tilde{y}\|_2$$

- Let \tilde{y} denote $\Pi \tilde{y}$ and let $\Pi(j)$ denote the j^{th} row of Π.

\[\tilde{y} \in \mathbb{R}^d: \text{arbitrary vector, } \Pi \tilde{y} \in \mathbb{R}^m: \text{compressed vector, } \Pi \in \mathbb{R}^{m \times d}: \text{random projection. } d: \text{original dim. } m: \text{compressed dim, } \epsilon: \text{error, } \delta: \text{failure prob.}\]
DISTRIBUTIONAL JL PROOF

Distributional JL Lemma: Let \(\mathbf{\Pi} \in \mathbb{R}^{m \times d} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \). If we set \(m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right) \), then for any \(\mathbf{y} \in \mathbb{R}^d \), with probability \(\geq 1 - \delta \)

\[
(1 - \epsilon) \| \mathbf{y} \|_2 \leq \| \mathbf{\Pi} \mathbf{y} \|_2 \leq (1 + \epsilon) \| \mathbf{y} \|_2
\]

- Let \(\mathbf{\tilde{y}} \) denote \(\mathbf{\Pi} \mathbf{y} \) and let \(\mathbf{\Pi}(j) \) denote the \(j^{th} \) row of \(\mathbf{\Pi} \).
- For any \(j \), \(\mathbf{\tilde{y}}(j) = \langle \mathbf{\Pi}(j), \mathbf{y} \rangle \).

\(\mathbf{\tilde{y}} \in \mathbb{R}^d \): arbitrary vector, \(\mathbf{\tilde{y}} \in \mathbb{R}^m \): compressed vector, \(\mathbf{\Pi} \in \mathbb{R}^{m \times d} \): random projection. \(d \): original dim. \(m \): compressed dim, \(\epsilon \): error, \(\delta \): failure prob.
Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\tilde{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

\[
(1 - \epsilon)\|\tilde{y}\|_2 \leq \|\Pi\tilde{y}\|_2 \leq (1 + \epsilon)\|\tilde{y}\|_2
\]

- Let \tilde{y} denote $\Pi\tilde{y}$ and let $\Pi(j)$ denote the j^{th} row of Π.
- For any j, $\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle$.

\[\tilde{y} \in \mathbb{R}^d: \text{arbitrary vector, } \tilde{y} \in \mathbb{R}^m: \text{compressed vector, } \Pi \in \mathbb{R}^{m \times d}: \text{random projection. } d: \text{original dim. } m: \text{compressed dim, } \epsilon: \text{error, } \delta: \text{failure prob.}\]
Distributional JL Lemma: Let \(\Pi \in \mathbb{R}^{m \times d} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \). If we set \(m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right) \), then for any \(\tilde{\mathbf{y}} \in \mathbb{R}^{d} \), with probability \(\geq 1 - \delta \)

\[
(1 - \epsilon) \| \tilde{\mathbf{y}} \|_2 \leq \| \Pi \tilde{\mathbf{y}} \|_2 \leq (1 + \epsilon) \| \tilde{\mathbf{y}} \|_2
\]

- Let \(\tilde{\mathbf{y}} \) denote \(\Pi \tilde{\mathbf{y}} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).
- For any \(j \), \(\tilde{\mathbf{y}}(j) = \langle \Pi(j), \tilde{\mathbf{y}} \rangle = \sum_{i=1}^{d} g_i \cdot \tilde{\mathbf{y}}(i) \) where \(g_i \sim \mathcal{N}(0, 1/m) \).
Distributional JL Lemma: Let \(\mathbf{\Pi} \in \mathbb{R}^{m \times d} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \). If we set \(m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right) \), then for any \(\mathbf{\tilde{y}} \in \mathbb{R}^d \), with probability \(\geq 1 - \delta \)
\[
(1 - \epsilon) \| \mathbf{\tilde{y}} \|_2 \leq \| \mathbf{\Pi} \mathbf{\tilde{y}} \|_2 \leq (1 + \epsilon) \| \mathbf{\tilde{y}} \|_2
\]

- Let \(\mathbf{\tilde{y}} \) denote \(\mathbf{\Pi} \mathbf{\tilde{y}} \) and let \(\mathbf{\Pi}(j) \) denote the \(j^{th} \) row of \(\mathbf{\Pi} \).
- For any \(j \), \(\mathbf{\tilde{y}}(j) = \langle \mathbf{\Pi}(j), \mathbf{\tilde{y}} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \mathbf{\tilde{y}}(i) \) where \(\mathbf{g}_i \sim \mathcal{N}(0, 1) \).

\[\mathbf{\tilde{y}} \in \mathbb{R}^d: \text{arbitrary vector, } \mathbf{\tilde{y}} \in \mathbb{R}^m: \text{compressed vector, } \mathbf{\Pi} \in \mathbb{R}^{m \times d}: \text{random projection. } d: \text{original dim. } m: \text{compressed dim, } \epsilon: \text{error, } \delta: \text{failure prob.}\]
• Let \(\tilde{y} \) denote \(\Pi \tilde{y} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).

• For any \(j \), \(\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \) where \(g_i \sim \mathcal{N}(0, 1) \).
DISTRIBUTIONAL JL PROOF

- Let \(\tilde{y} \) denote \(\Pi \tilde{y} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).
- For any \(j \), \(\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \) where \(g_i \sim \mathcal{N}(0, 1) \).
- \(g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2) \): a normal distribution with variance \(\tilde{y}(i)^2 \).

\[\hat{y} \in \mathbb{R}^d: \text{arbitrary vector, } \check{y} \in \mathbb{R}^m: \text{compressed vector, } \Pi \in \mathbb{R}^{m \times d}: \text{random projection mapping } \check{y} \rightarrow \hat{y}. \; \Pi(j): \text{ } j^{th} \text{ row of } \Pi, \; d: \text{original dimension. } m: \text{compressed dimension, } g_i: \text{normally distributed random variable.} \]
DISTRIBUTIONAL JL PROOF

- Let \(\tilde{y} \) denote \(\Pi \tilde{y} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).
- For any \(j \), \(\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \) where \(g_i \sim \mathcal{N}(0, 1) \).
- \(g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2) \): a normal distribution with variance \(\tilde{y}(i)^2 \).

\[
\sum_{i=1}^{\sqrt{m}} \mathcal{N}(0, \tilde{y}(i)^2)
\]

\(\sqrt{m} \) variance 1

\(\tilde{y} \in \mathbb{R}^d \): arbitrary vector, \(\tilde{y} \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection mapping \(\tilde{y} \rightarrow \tilde{y} \). \(\Pi(j) \): \(j^{th} \) row of \(\Pi \), \(d \): original dimension. \(m \): compressed dimension, \(g_i \): normally distributed random variable.
Let \(\tilde{y} \) denote \(\Pi \tilde{y} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).

For any \(j \), \(\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \) where \(g_i \sim \mathcal{N}(0, 1) \).

\(g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2) \): a normal distribution with variance \(\tilde{y}(i)^2 \).

\[
\tilde{y}(j) = \frac{1}{\sqrt{m}} \left[g_1 \cdot y(1) + g_2 \cdot y(2) + \ldots + g_d \cdot y(d) \right]
\]
DISTRIBUTIONAL JL PROOF

- Let \tilde{y} denote $\Pi\tilde{y}$ and let $\Pi(j)$ denote the j^{th} row of Π.
- For any j, $\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i)$ where $g_i \sim \mathcal{N}(0, 1)$.
- $g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2)$: a normal distribution with variance $\tilde{y}(i)^2$.

\[
\tilde{y}(j) = \frac{1}{\sqrt{m}} [g_1 \cdot y(1) + g_2 \cdot y(2) + \ldots + g_n \cdot y(d)]
\]

What is the distribution of $\tilde{y}(j)$?

$\tilde{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{y} \rightarrow \tilde{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
Let \(\tilde{y} \) denote \(\Pi \tilde{y} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).

For any \(j \), \(\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \) where \(g_i \sim \mathcal{N}(0, 1) \).

\(g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2) \): a normal distribution with variance \(\tilde{y}(i)^2 \).

\[
\tilde{y}(j) = \frac{1}{\sqrt{m}} [g_1 \cdot \gamma(1) + g_2 \cdot \gamma(2) + \ldots + g_n \cdot \gamma(d)]
\]

What is the distribution of \(\tilde{y}(j) \)? Also Gaussian!

\(\tilde{y} \in \mathbb{R}^d \): arbitrary vector, \(\tilde{y} \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection mapping \(\tilde{y} \rightarrow \tilde{y} \). \(\Pi(j) \): \(j^{th} \) row of \(\Pi \), \(d \): original dimension. \(m \): compressed dimension, \(g_i \): normally distributed random variable.
Letting $\tilde{y} = \mathbf{p} \tilde{y}$, we have $\tilde{y}(j) = \langle \mathbf{p}(j), \tilde{y} \rangle$ and:

$$\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \text{ where } g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2).$$
Letting \(\tilde{y} = \Pi \tilde{y} \), we have \(\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle \) and:

\[
\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \text{ where } g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2).
\]

Stability of Gaussian Random Variables. For independent \(a \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(b \sim \mathcal{N}(\mu_2, \sigma_2^2) \) we have:

\[
a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)
\]
Letting \(\tilde{y} = \mathbf{P} \tilde{y} \), we have \(\tilde{y}(j) = \langle \mathbf{P}(j), \tilde{y} \rangle \) and:

\[
\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \text{ where } g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2).
\]

Stability of Gaussian Random Variables. For independent \(a \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(b \sim \mathcal{N}(\mu_2, \sigma_2^2) \) we have:

\[
a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)
\]

\(\tilde{y} \in \mathbb{R}^d \): arbitrary vector, \(\tilde{y} \in \mathbb{R}^m \): compressed vector, \(\mathbf{P} \in \mathbb{R}^{m \times d} \): random projection mapping \(\tilde{y} \rightarrow \tilde{y} \). \(\mathbf{P}(j) \): \(j^{th} \) row of \(\mathbf{P} \), \(d \): original dimension. \(m \): compressed dimension, \(g_i \): normally distributed random variable.
Letting $\tilde{y} = \Pi \hat{y}$, we have $\tilde{y}(j) = \langle \Pi(j), \hat{y} \rangle$ and:

$$\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \hat{y}(i) \text{ where } g_i \cdot \hat{y}(i) \sim \mathcal{N}(0, \hat{y}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{y}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \hat{y}(1)^2 + \hat{y}(2)^2 + \ldots + \hat{y}(d)^2)$.

$\hat{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\hat{y} \rightarrow \tilde{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
Letting \(\tilde{y} = \Pi \hat{y} \), we have \(\tilde{y}(j) = \langle \Pi(j), \hat{y} \rangle \) and:

\[
\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \hat{y}(i) \text{ where } g_i \cdot \hat{y}(i) \sim \mathcal{N}(0, \hat{y}(i)^2).
\]

Stability of Gaussian Random Variables. For independent \(a \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(b \sim \mathcal{N}(\mu_2, \sigma_2^2) \) we have:

\[
a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)
\]

Thus, \(\tilde{y}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \|\hat{y}\|_2^2) \)

\(\hat{y} \in \mathbb{R}^d: \) arbitrary vector, \(\tilde{y} \in \mathbb{R}^m: \) compressed vector, \(\Pi \in \mathbb{R}^{m \times d}: \) random projection mapping \(\hat{y} \rightarrow \tilde{y}. \) \(\Pi(j): j^{th} \) row of \(\Pi, \) \(d: \) original dimension. \(m: \) compressed dimension, \(g_i: \) normally distributed random variable.
Letting $\tilde{y} = \Pi \hat{y}$, we have $\tilde{y}(j) = \langle \Pi(j), \hat{y} \rangle$ and:

$$\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \text{ where } g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{y}(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m)$.

$\hat{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\hat{y} \rightarrow \tilde{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
Letting $\tilde{y} = \Pi \vec{y}$, we have $\tilde{y}(j) = \langle \Pi(j), \vec{y} \rangle$ and:

$$\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \vec{y}(i) \text{ where } g_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2).$$

Stability of Gaussian Random Variables.

For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{y}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$. I.e., \vec{y} itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\vec{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \vec{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
Letting \(\tilde{y} = \Pi \tilde{y} \), we have \(\tilde{y}(j) = \langle \Pi(j), \tilde{y} \rangle \) and:

\[
\tilde{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i) \text{ where } g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2).
\]

Stability of Gaussian Random Variables. For independent \(a \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(b \sim \mathcal{N}(\mu_2, \sigma_2^2) \) we have:

\[
a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)
\]

Thus, \(\tilde{y}(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m) \). I.e., \(\tilde{y} \) itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

Stability is another explanation for the central limit theorem.

\(\tilde{y} \in \mathbb{R}^d \): arbitrary vector, \(\tilde{y} \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection mapping \(\tilde{y} \rightarrow \tilde{y} \). \(\Pi(j) \): \(j^{th} \) row of \(\Pi \), \(d \): original dimension. \(m \): compressed dimension, \(g_i \): normally distributed random variable
So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\tilde{y} \in \mathbb{R}^d$, letting $\tilde{y} = \Pi \tilde{y}$:

$$\tilde{y}(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m).$$
DISTRIBUTIONAL JL PROOF

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\mathbf{y} \in \mathbb{R}^d$, letting $\mathbf{\tilde{y}} = \mathbf{\Pi} \mathbf{y}$:

$$\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|\mathbf{\tilde{y}}\|_2^2/m).$$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$\mathbf{\tilde{y}} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{\tilde{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{\tilde{y}} \rightarrow \mathbf{\tilde{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
DISTRIBUTIONAL JL PROOF

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\mathbf{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \mathbf{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\mathbf{y}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^2 \right]$$

$\tilde{\mathbf{y}} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{y} \rightarrow \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i: normally distributed random variable.
So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\mathbf{y} \in \mathbb{R}^d$, letting $\mathbf{\tilde{y}} = \mathbf{\Pi} \mathbf{y}$:

$$\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|\mathbf{y}\|_2^2/m).$$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} \mathbf{\tilde{y}}(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[\mathbf{\tilde{y}}(j)^2]$$

$$= \sum_{j=1}^{m} \mathbb{E}[\|\mathbf{y}\|_2^2/m] = \|\mathbf{y}\|_2^2 \sum_{j=1}^{m} \mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2/m]$$

$\mathbf{\tilde{y}} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{\tilde{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{y} \rightarrow \mathbf{\tilde{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
So far: Letting \(\mathbf{\Pi} \in \mathbb{R}^{d \times m} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \), for any \(\mathbf{\tilde{y}} \in \mathbb{R}^d \), letting \(\mathbf{\tilde{y}} = \mathbf{\Pi} \mathbf{y} \):

\[
\tilde{y}(j) \sim \mathcal{N}(0, \|\mathbf{\tilde{y}}\|_2^2/m).
\]

What is \(\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] \)?

\[
\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} \tilde{y}(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{y}(j)^2]
\]

\(\mathbf{\tilde{y}} \in \mathbb{R}^d \): arbitrary vector, \(\mathbf{\tilde{y}} \in \mathbb{R}^m \): compressed vector, \(\mathbf{\Pi} \in \mathbb{R}^{m \times d} \): random projection mapping \(\mathbf{\tilde{y}} \to \mathbf{\tilde{y}} \). \(\mathbf{\Pi}(j) \): \(j \text{th} \) row of \(\mathbf{\Pi} \), \(d \): original dimension. \(m \): compressed dimension, \(g_i \): normally distributed random variable
So far: Letting \(\mathbf{\Pi} \in \mathbb{R}^{d \times m} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \), for any \(\mathbf{y} \in \mathbb{R}^d \), letting \(\mathbf{\tilde{y}} = \mathbf{\Pi} \mathbf{y} \):

\[
\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, ||\mathbf{y}||_2^2/m).
\]

What is \(\mathbb{E}[||\mathbf{\tilde{y}}||_2^2] \)?

\[
\mathbb{E}[||\mathbf{\tilde{y}}||_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} \mathbf{\tilde{y}}(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[\mathbf{\tilde{y}}(j)^2] = \sum_{j=1}^{m} \frac{||\mathbf{y}||_2^2}{m}
\]

\(\mathbf{\tilde{y}} \in \mathbb{R}^d \): arbitrary vector, \(\mathbf{\tilde{y}} \in \mathbb{R}^m \): compressed vector, \(\mathbf{\Pi} \in \mathbb{R}^{m \times d} \): random projection mapping \(\mathbf{y} \rightarrow \mathbf{\tilde{y}} \). \(\mathbf{\Pi}(j) \): jth row of \(\mathbf{\Pi} \), d: original dimension. m: compressed dimension, \(\mathbf{g}_i \): normally distributed random variable
So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\mathbf{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \mathbf{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\mathbf{y}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^2] = \sum_{j=1}^{m} \frac{\|\mathbf{y}\|_2^2}{m} = \|\mathbf{y}\|_2^2$$

$\tilde{\mathbf{y}} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{\hat{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{\hat{y}} \to \mathbf{\hat{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
DISTRIBUTIONAL JL PROOF

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\mathbf{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \mathbf{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}(0, \|\mathbf{y}\|_2^2/m).
$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$
\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} \tilde{y}(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{y}(j)^2]
$$

$$
= \sum_{j=1}^{m} \frac{\|\mathbf{y}\|_2^2}{m} = \|\mathbf{y}\|_2^2
$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

$\tilde{\mathbf{y}} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{y} \rightarrow \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i: normally distributed random variable
DISTRIBUTIONAL JL PROOF

So far: Letting $\mathbf{P} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\mathbf{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{P}\mathbf{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\mathbf{y}\|_2^2/m).$$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^2] = \sum_{j=1}^{m} \frac{\|\mathbf{y}\|_2^2}{m} = \|\mathbf{y}\|_2^2$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

How is $\|\tilde{\mathbf{y}}\|_2^2$ distributed? Does it concentrate?

$\tilde{\mathbf{y}} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\mathbf{P} \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{y} \to \tilde{\mathbf{y}}$. $\mathbf{P}(j)$: j^{th} row of \mathbf{P}, d: original dimension. m: compressed dimension, g_i: normally distributed random variable
So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$, for any $\mathbf{\tilde{y}} \in \mathbb{R}^{d}$, letting $\mathbf{\tilde{y}} = \mathbf{\Pi} \mathbf{\bar{y}}$:

$$\tilde{y}(j) \sim \mathcal{N}(0, \|\mathbf{\bar{y}}\|_2^2/m) \text{ and } \mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|\mathbf{\bar{y}}\|_2^2$$
So far: Letting \(\mathbf{\Pi} \in \mathbb{R}^{d \times m} \) have each entry chosen i.i.d. as \(\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1) \), for any \(\mathbf{\hat{y}} \in \mathbb{R}^d \), letting \(\mathbf{\hat{y}} = \mathbf{\Pi} \mathbf{\hat{y}} \):

\[
\mathbf{\hat{y}}(j) \sim \mathcal{N}(0, \|\mathbf{\hat{y}}\|_2^2/m) \quad \text{and} \quad \mathbb{E}[\|\mathbf{\hat{y}}\|_2^2] = \|\mathbf{\hat{y}}\|_2^2
\]

\[\|\mathbf{\hat{y}}\|_2^2 = \sum_{i=1}^{m} \mathbf{\hat{y}}(j)^2 \] a Chi-Squared random variable with \(m \) degrees of freedom (a sum of \(m \) squared independent Gaussians)
So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$, for any $\mathbf{y} \in \mathbb{R}^d$, letting $\mathbf{\tilde{y}} = \mathbf{\Pi} \mathbf{y}$:

$$\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, ||\mathbf{\tilde{y}}||_2^2/m) \text{ and } \mathbb{E}[||\mathbf{\tilde{y}}||_2^2] = ||\mathbf{y}||_2^2$$

$$||\mathbf{\tilde{y}}||_2^2 = \sum_{i=1}^{m} \mathbf{\tilde{y}}(j)^2 \text{ a Chi-Squared random variable with } m \text{ degrees of freedom (a sum of } m \text{ squared independent Gaussians)}$$
So far: Letting \(\mathbf{\Pi} \in \mathbb{R}^{d \times m} \) have each entry chosen i.i.d. as \(\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1) \), for any \(\vec{y} \in \mathbb{R}^d \), letting \(\vec{\tilde{y}} = \mathbf{\Pi} \vec{y} \):

\[
\vec{\tilde{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m) \quad \text{and} \quad \mathbb{E}[\|\vec{\tilde{y}}\|_2^2] = \|\vec{y}\|_2^2
\]

\(\|\vec{\tilde{y}}\|_2^2 = \sum_{i=1}^{m} \tilde{y}(j)^2 \) a Chi-Squared random variable with \(m \) degrees of freedom (a sum of \(m \) squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting \(\mathbf{Z} \) be a Chi-Squared random variable with \(m \) degrees of freedom,

\[
\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \geq \epsilon \mathbb{E}\mathbf{Z}] \leq 2e^{-m\epsilon^2/8}.
\]

\(\vec{y} \in \mathbb{R}^d \): arbitrary vector, \(\vec{\tilde{y}} \in \mathbb{R}^m \): compressed vector, \(\mathbf{\Pi} \in \mathbb{R}^{m \times d} \): random projection mapping \(\vec{y} \rightarrow \vec{\tilde{y}}. \) \(\mathbf{\Pi}(j) \): \(j^{th} \) row of \(\mathbf{\Pi} \), \(d \): original dimension. \(m \): compressed dimension, \(\epsilon \): embedding error, \(\delta \): embedding failure prob.
So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $
abla \sqrt{m} \cdot \mathcal{N}(0, 1)$, for any $\tilde{y} \in \mathbb{R}^d$, letting $\tilde{y} = \Pi \tilde{y}$:

$$\tilde{y}(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m) \text{ and } \mathbb{E}[\|\tilde{y}\|_2^2] = \|\tilde{y}\|_2^2$$

$$\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}(j)^2$$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|Z - \mathbb{E}Z| \geq \epsilon \mathbb{E}Z] \leq 2e^{-m\epsilon^2/8}.$$

If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, with probability $1 - O(e^{-\log(1/\delta)}) \geq 1 - \delta$:

$$(1 - \epsilon)\|\tilde{y}\|_2^2 \leq \|\tilde{y}\|_2^2 \leq (1 + \epsilon)\|\tilde{y}\|_2^2.$$

$\tilde{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{y} \rightarrow \tilde{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
DISTRIBUTIONAL JL PROOF

So far: Letting \(\mathbf{\Pi} \in \mathbb{R}^{d \times m} \) have each entry chosen i.i.d. as \(\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1) \), for any \(\mathbf{y} \in \mathbb{R}^d \), letting \(\tilde{\mathbf{y}} = \mathbf{\Pi} \mathbf{y} \):

\[
\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\mathbf{y}\|_2^2/m) \quad \text{and} \quad \mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\mathbf{y}\|_2^2
\]

\(\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{y}(j)^2 \) a Chi-Squared random variable with \(m \) degrees of freedom (a sum of \(m \) squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting \(\mathbf{Z} \) be a Chi-Squared random variable with \(m \) degrees of freedom,

\[
\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \geq \epsilon \mathbb{E}\mathbf{Z}] \leq 2e^{-m\epsilon^2/8}.
\]

If we set \(m = \Theta \left(\frac{\log(1/\delta)}{\epsilon^2} \right) \), with probability \(1 - O(e^{-\log(1/\delta)}) \geq 1 - \delta \):

\[
(1 - \epsilon)\|\mathbf{y}\|_2^2 \leq \|\tilde{\mathbf{y}}\|_2^2 \leq (1 + \epsilon)\|\mathbf{y}\|_2^2.
\]

Gives the distributional JL Lemma and thus the classic JL Lemma!
Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.
Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.
Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.
Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.

- For any point a in A, $\langle a, w \rangle \geq c + m$
- For any point b in B, $\langle b, w \rangle \leq c - m$.
- Assume all vectors have unit norm.
Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.

- For any point \(a \) in \(A \), \(\langle a, w \rangle \geq c + m \)
- For any point \(b \) in \(B \), \(\langle b, w \rangle \leq c - m \).
- Assume all vectors have unit norm.

JL Lemma implies that after projection into \(O \left(\frac{\log n}{m^2} \right) \) dimensions, still have \(\langle \tilde{a}, \tilde{w} \rangle \geq c + m/4 \) and \(\langle \tilde{b}, \tilde{w} \rangle \leq c - m/4 \).
Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.

- For any point a in A, $\langle a, w \rangle \geq c + m$
- For any point b in B, $\langle b, w \rangle \leq c - m$.
- Assume all vectors have unit norm.

JL Lemma implies that after projection into $O\left(\frac{\log n}{m^2}\right)$ dimensions, still have $\langle \tilde{a}, \tilde{w} \rangle \geq c + m/4$ and $\langle \tilde{b}, \tilde{w} \rangle \leq c - m/4$.

Upshot: Can random project and run SVM (much more efficiently) in the lower dimensional space to find separator \tilde{w}.
Questions?