
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 9

1

Logistics

• Problem Set 2 is due Friday 10/11 at 11:59pm.

• The midterm is the following Thursday, 10/17 from 7-9pm. We
have already posted several past midterms as practice and will
post additional material soon.

• If you have a conflict between the midterm and another
midterm go to
https://www.umass.edu/registrar/evening-exam-conflicts
to submit a conflict form. E.g., we have a conflict with 610.

• A lot of people said on the quiz that they are unsure exponential
concentration bounds (Bernstein, Chernoff). There will be some
more practice using these bounds on Pset 2 and I’ll try to add
extra practice questions to the midterm review material as well.

2

https://www.umass.edu/registrar/evening-exam-conflicts

Summary

Last Class:

• Frequent elements problem via Count-Min sketch.

• Start on distinct elements counting in streams via MinHashing.

This Class:

• Finish up MinHashing analysis.

• The Median Trick to boost success probability.

• High-level overview of practical distinct elements algorithms.

3

Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

4

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1 (using E(s) =

∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation. Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ϵ · E[s] for any
ϵ ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cϵ)d ≤ d̂ ≤ (1+ cϵ)d

.
5

Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1 and Var[s] ≤ 1

(d+ 1)2 (also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

1
ϵ2
.

Bound is vacuous for any ϵ < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

6

Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h : U → [0, 1] be a random hash functionLet
h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s := 1

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))
• For j=1,…,k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj
• Return d̂ = 1

s − 1

7

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2 =⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2 =

ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

8

Space Complexity

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions
• s1, s2, . . . , sk := 1
• For i = 1, . . . ,n

• For j=1,…, k, sj := min(sj,hj(xi))
• s := 1

k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ϵ2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ϵ · d with

probability at least 1− δ.

• Space complexity is k = 1
ϵ2·δ real numbers s1, . . . , sk.

• δ = 5% failure rate gives a factor 20 overhead in space
complexity. 9

Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2> 2/3 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the
median will.

• Have < 1/2< 1/3 of trials on both the left and right. 10

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

2
3 · t56 · E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ. 11

Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ϵ2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ϵ2
= O

(
log(1/δ)

ϵ2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

12

Distinct Elements in Practice

Our algorithm uses continuous valued fully random hash functions.
Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends to
when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.
The more distinct hashes we see,
the higher we expect this
maximum to be.

13

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

a) O(1) b) O(log d) c) O(
√
d) d) O(d)

Pr(h(xi) has x log d trailing zeros) = 1
2x log d =

1
d .

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d. m takes log log d bits to store.

Total Space: O
(

log log d
ϵ2

)
for an ϵ approximate count.

Note: Careful averaging of estimates from multiple hash functions.

14

LogLog Space Guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log log d

ϵ2

)
=

1.04 · ⌈log2 log2 d⌉
ϵ2

bits1

=
1.04 · 5
.022 = 13000 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn)
is is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important! 15

HyperLogLog In Practice

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100s billions of
rows. ∼ 5 million count distinct queries per day. E.g.,

• Count number if distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Traditional COUNT, DISTINCT SQL calls are far too slow, especially
when the data is distributed across many servers.

16

Questions?

17

