COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 8

Summary

Last Class:

- Finish up Bloom Filters and optimization of number of hash functions.
- Start on streaming algorithms.
- Introduce the frequent items problem and its applications.
- Start on the Count-Min sketch algorithm for frequent items.

This Class:

- Analysis of Count-Min sketch .
- Start on distinct items counting problem.

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

- To solve this problem, it suffices to estimate the frequency f(x) of each item x up to error $\pm \frac{\epsilon n}{k}$.
- Will discuss later how to maintain the list of top items in small space.

Count-min sketch:

$$\mathbf{x}_1$$
 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 ... \mathbf{x}_n

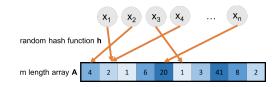
random hash function h

random hash fui

m length array A

Will use $A[\mathbf{h}(x)]$ to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

Count-Min Sketch Accuracy



Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[\mathbf{h}(x)] \ge f(x)$.

• $A[\mathbf{h}(x)]$ counts the number of occurrences of any y with $\mathbf{h}(y) = \mathbf{h}(x)$, including x itself.

•
$$A[\mathbf{h}(x)] = f(x) + \sum_{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)} f(y).$$

f(x): frequency of x in the stream (i.e., number of items equal to x). **h**: random hash function. *m*: size of Count-min sketch array.

Count-Min Sketch Accuracy

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)}$$

Expected Error:

error in frequency estimate

f(y)

$$\mathbb{E}\left[\sum_{y \neq x: h(y)=h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

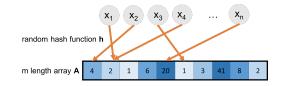
What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality:
$$\Pr\left[\sum_{y \neq x:h(y)=h(x)} f(y) \ge \frac{2n}{m}\right] \le \frac{1}{2}.$$

What property of h is required to show this bound? a) fully random b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

Count-Min Sketch Accuracy



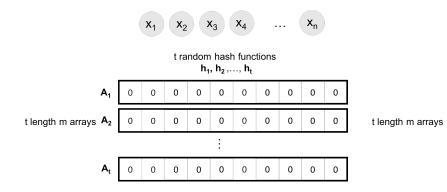
Claim: For any x, with probability at least 1/2,

$$f(x) \le A[\mathbf{h}(x)] \le f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$. How can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

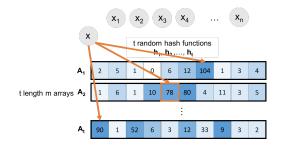
Count-Min Sketch Repetition



Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (Count-min sketch)

Why min instead of taking the average? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

Count-Min Sketch Analysis



Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}$.
- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 1/2^t$.
- To get a good estimate with probability $\geq 1 \delta$, set $t = \log_2(1/\delta)$.

Upshot: Count-min sketch lets us estimate the frequency of each item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

- Accurate enough to solve the (ϵ, k) -Frequent elements problem – distinguish between items with frequency $\frac{n}{k}$ and those with frequency $(1 - \epsilon)\frac{n}{k}$.
- How should we set δ if we want a good estimate for all items at once, with 99% probability?

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

One approach:

- When a new item comes in at step *i*, check if its estimated frequency is $\geq i/k$ and store it if so.
- At step *i* remove any stored items whose estimated frequency drops below *i/k*.
- Store at most O(k) items at once and have all items with frequency $\geq n/k$ stored at the end of the stream.

Questions on Frequent Items?

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements in the stream. E.g.,

 $1,5,7,5,2,1 \rightarrow 4$ distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.
- Distinct values in a database column (for estimating sizes of joins and group bys).
- Number of distinct search engine queries.
- Counting distinct motifs in large DNA sequences.

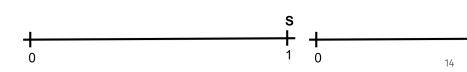
Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

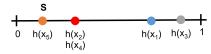
Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

- Let $\mathbf{h}: U \to [0, 1]$ be a random hash function (with a real valued output)
- s := 1
- For i = 1, ..., n
 - $s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$



Min-Hashing for Distinct Elements:

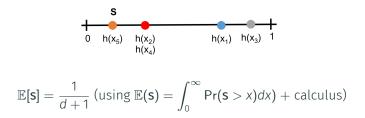
- + Let $\mathbf{h}: U \rightarrow [0, 1]$ be a random hash function (with a real valued output)
- s := 1
- For i = 1, ..., n
 - $s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$



- After all items are processed, s is the minimum of d points chosen uniformly at random on [0, 1]. Where d = # distinct elements.
- Intuition: The larger *d* is, the smaller we expect s to be.
- Same idea as Flajolet-Martin algorithm and HyperLogLog, except they use discrete hash functions.

Performance in Expectation

s is the minimum of *d* points chosen uniformly at random on [0, 1]. Where d = # distinct elements.



- So our estimate $\hat{\mathbf{d}} = \frac{1}{s} 1$ is correct if \mathbf{s} exactly equals its expectation. Does this mean $\mathbb{E}[\hat{\mathbf{d}}] = d$? No, but:
- Approximation is robust: if $|\mathbf{s} \mathbb{E}[\mathbf{s}]| \le \epsilon \cdot \mathbb{E}[\mathbf{s}]$ for any $\epsilon \in (0, 1/2)$ and a small constant $c \le 4$:

$$(1-c\epsilon)d \leq \widehat{\mathsf{d}} \leq (1+c\epsilon)c$$