COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 8

Last Class:
- Finish up Bloom Filters and optimization of number of hash
functions.
- Start on streaming algorithms.
- Introduce the frequent items problem and its applications.

- Start on the Count-Min sketch algorithm for frequent items.

This Class:

- Analysis of Count-Min sketch .

- Start on distinct items counting problem.

Approximate Frequent Elements

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xp. Return a set F of items, including all items that appear at
least ¢ times and only items that appear at least (1 —¢) - § times.

- To solve this problem, it suffices to estimate the frequency f(x)
of each item x up to error £

- Will discuss later how to maintain the list of top items in small
space.

Frequent Elements with Count-Min Sketch

Count-min sketch:

random hash function h

m length array A| 0 0 0 0 0 0 0 0 0 0

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. lLe, |[{x; : x; = x}|.

random hash ful

m length array A

Count-Min Sketch Accuracy

Xy Xp X3 Xg X

random hash function h

m length array A | 4

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).

- A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

AL = FO + 22y sy =ho FV)-

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

Count-Min Sketch Accuracy

Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E { > f(y)] =Y Pr(h(y) = h(x)) - f(y)
y#xh(y)=h(x)

=3) = (-0 <

n
m m
What is a bound on probability that the error is > %?

Markov's inequality: Pr {Zy#h(y):h(x)f(y) > <5

What property of h is required to show this bound? a) fully random
b) pairwise independent ¢) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6

Count-Min Sketch Accuracy

X; Xp X3 X4 R

random hash functior%

m length array A | 4 2 1

! 3

Claim: For any x, with probability at least 1/2,

) < ALCO] < 09 + 2.

To solve the (e, R)-Frequent elements problem, set m = 2. How

can we improve the success probability? Repetition. ‘

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

Count-Min Sketch Repetition

Xp1 Xp X3 X e (X

t random hash functions

A, 0 0 0 0 0 0 0 0 0 0

tlengthmarrays A, | 0 /0 00 0 O 0|0|O0 O t length m arrays

Aclo o|o|o|o0o o]0 0|0]|oO

Estimate f(x) with f(x) = minjepg Ailhi(X)]. (Count-min sketch)

Why min instead of taking the average? The minimum estimate is
always the most accurate since they are all overestimates of the true

frequency!

Count-Min Sketch Analysis

Ay

tlength m arrays Az

B EECECECT

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability

>1/2: en

fx) < Ailhi ()] < f(x) + R

- What is Pr[f(x) < f(x) < f(x) + <2]? 1—1/2t.
- To get a good estimate with probability > 1— 4, set t = log,(1/4).

Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ¢! with probability > 1—4din
O (log(1/0) - R/€) space.

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency 7
and those with frequency (1 —€)7.

- How should we set ¢ if we want a good estimate for all
items at once, with 99% probability?

10

Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

- When a new item comes in at step i/, check if its estimated
frequency is > i/k and store it if so.

- At step i remove any stored items whose estimated
frequency drops below i/k.

- Store at most O(R) items at once and have all items with
frequency > n/k stored at the end of the stream.

n

Questions on Frequent Items?

12

Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements in the stream.

Eg,
1,5,7,5,2,1 — 4 distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.

- Distinct values in a database column (for estimating sizes of
joins and group bys).

- Number of distinct search engine queries.

- Counting distinct motifs in large DNA sequences.
Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

13

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

S

T

14

Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

- Leth: U — [0,1] be a random hash function (with a real valued output)
- Ss:i=1
- Fori=1,...,n
- s :=min(s, h(x))
- Returnd =1 —1

S
+— —e— —o—+
0 h(xs) h(x,) h(x) hixg) 1
h(x,)

- After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

- Intuition: The larger d is, the smaller we expect s to be.

- Same idea as Flajolet-Martin algorithm and HyperLoglog, except
they use discrete hash functions. 15

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—0—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

1
d+1

E[s] = (using E(s) = /OO Pr(s > x)dx) + calculus)
0

- So our estimate d = 1 —Tis correct if s exactly equals its

expectation. Does this mean]E[a] = d? No, but:
- Approximation is robust: if |s — E[s]| < ¢- E[s] for any
e € (0,1/2) and a small constant ¢ < 4

(1—ce)d <d < (1+ce)d

