COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 8



Last Class:
- Finish up Bloom Filters and optimization of number of hash
functions.
- Start on streaming algorithms.
- Introduce the frequent items problem and its applications.

- Start on the Count-Min sketch algorithm for frequent items.

This Class:

- Analysis of Count-Min sketch .

- Start on distinct items counting problem.



Approximate Frequent Elements

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xp. Return a set F of items, including all items that appear at
least ¢ times and only items that appear at least (1 —¢) - § times.

- To solve this problem, it suffices to estimate the frequency f(x)
of each item x up to error £

- Will discuss later how to maintain the list of top items in small
space.



Frequent Elements with Count-Min Sketch

Count-min sketch:



Frequent Elements with Count-Min Sketch

Count-min sketch:
Xy Xp Xz Xy e Xy

random hash function h

m length array A| 0 0 0 0 0 0 0 0 0 0




Frequent Elements with Count-Min Sketch

Count-min sketch:
Xy Xo Xz Xy e Xq

random hash function h

m length array A| 0 1 0 0 0 0 0 0 0 0




Frequent Elements with Count-Min Sketch

Count-min sketch:

random hash function h

m length array A




Frequent Elements with Count-Min Sketch

Count-min sketch:
Xy Xp Xz Xy e Xy

random hash function h

m length array A| 1 1 0 0 0 1 0 0 0 0




Frequent Elements with Count-Min Sketch

Count-min sketch:
Xy Xp Xz Xy e Xy

random hash function h

m length array A| 1 2 0 0 0 1 0 0 0 0




Frequent Elements with Count-Min Sketch

Count-min sketch:

random hash function h




Frequent Elements with Count-Min Sketch

Count-min sketch:

random hash function h

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, [{xj : X; = x}|.




Count-Min Sketch Accuracy

Xy Xp X3 Xg X

random hash function h

m length array A | 4

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).

- A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

Xy Xp X3 Xg X

random hash function h

m length array A | 4

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).

- A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

AL = FO + 22y sy =ho FV)-

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

Alh()] = f(x) + Y. W)

y#h()=h(x)

error in frequency estimate

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E| Y fwl=

yAch(y)=h(x)

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E| Y f| =D Pr(h(y) =hx)-f)

y#x:h(y)=h(x) V#X

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E { > f(y)] = > Pr(h(y) = h()) -fv)

yAch(y)=h(x)

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E { > f(y)] = > Pr(h(y) = h()) -fv)

yAch(y)=h(x)

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E { > f(y)] = Y- Pr(h(y) = h() f0)
y#xh(y)=h(x)
=3 ) = (-0 <

n
m m

What is a bound on probability that the error is > %?

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E { > f(y)] = > Pr(h(y) = h(x)) - f(y)
y#x:h(y)=h(x)
1 1 n
S W) = (= f0) < =
What is a bound on probability that the error is > %?

Markov's inequality: Pr {Z#X:h(y):h(x)f(y) > <5

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E { > f(y)] =Y Pr(h(y) = h(x)) - f(y)
y#xh(y)=h(x)

=3 ) = (-0 <

n
m m
What is a bound on probability that the error is > %?

Markov's inequality: Pr {Zy#h(y):h(x)f(y) > <5

What property of h is required to show this bound? a) fully random
b) pairwise independent ¢) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

X; Xp X3 X4 R

random hash function h

m length arrayAl 4 2 1 E. 1 3

Claim: For any x, with probability at least 1/2,

) < ALCO] < 09 + 2.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

X; Xp X3 X4 e X

random hash functior%

m length array A | 4 2 1

n

! 3

Claim: For any x, with probability at least 1/2,

) < ALCO] < 09 + 2.

To solve the (e, R)-Frequent elements problem, set m = 2

P

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

X; Xp X3 X4 e X

random hash functior%

m length array A | 4 2 1

n

! 3

Claim: For any x, with probability at least 1/2,

2n
) < AINGOT < F0) + .
To solve the (e, k)-Frequent elements problem, set m = 2. How

can we improve the success probability? ‘

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

X; Xp X3 X4 R

random hash functior%

m length array A | 4 2 1

! 3

Claim: For any x, with probability at least 1/2,

) < ALCO] < 09 + 2.

To solve the (e, R)-Frequent elements problem, set m = 2. How

can we improve the success probability? Repetition. ‘

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Repetition

t random hash functions
hy, hy ..., he

A, 0 0 0 0 0 0 0 0 0 0

tlength m arrays Az | 0




Count-Min Sketch Repetition

X4 Xo X3 Xy

{random hash functions
hy, hy,... by

A1100000‘0‘000

tlength m arrays Az | 0




Count-Min Sketch Repetition

X4 Xo X3 Xy

) t}aﬁdom hash functions
hy, hy ... hy

Arl2 ojCc|lo Q|00 0 0 O

tlength marrays A2 | 0 | 0




Count-Min Sketch Repetition

t random hash functions
hy, hy ..., he

A, 2 5 1 0 6 12. 1 3 4

tlengthmarrays A, | 1 | 6 | 1 |10 78 . 4 {113 5

At.l 52 6 | 3 |12 33.3 2




Count-Min Sketch Repetition

Xy Xp X3 Xg e Xq

t random hash functions

A2 s |1 4
tlengthmarrays A2 | 1 | 6 | 1 5
A, . 1 [ 52 2

Estimate f(x) with f(x) = minic( Ai[hi(x)]. (Count-min sketch)



Count-Min Sketch Repetition

Xy Xp X3 X4 Xn
X
t random hash functions
A, \z 113 | 4
A |
tlength m arrays Az \1 6 | 1 |10 4 11| 3 | 5

A, 1 6 | 3 |12 33.32

Estimate f(x) with f(x) = minic( Ai[hi(x)]. (Count-min sketch)




Count-Min Sketch Repetition

Xy Xp X3 X4 Xn
X
t random hash functions
A, \z 113 | 4
A |
tlength m arrays Az \1 6 | 1 |10 4 11| 3 | 5

A, 1 6 | 3 |12 33.32

Estimate f(x) with f(x) = minic( Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?




Count-Min Sketch Repetition

Xy Xp X3 X4 Xn
X
t random hash functions
A, \z 113 | 4
A |
tlength m arrays Az \1 6 | 1 |10 4 11| 3 | 5

A, 1 6 | 3 |12 33.32

Estimate f(x) with f(x) = minic( Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average? The minimum estimate is
always the most accurate since they are all overestimates of the true

frequency!



Count-Min Sketch Analysis

Xy Xp Xz X4 R S

t random hash functions
..., h,
2 | s M 6 |12 1 ‘ 3 ‘ 4 |

Ay

tlength m arrays Az

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]



Count-Min Sketch Analysis

Ay

tlength m arrays Az

B EECECECT

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability

>1/2: en

fx) < Ailhi ()] < f(x) + R



Count-Min Sketch Analysis

Ay

tlength m arrays Az

B EECECECT

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability

>1/2: en

fx) < Ailhi ()] < f(x) + R

- What is Pr[f(x) < f(x) < f(x) + £]?



Count-Min Sketch Analysis

Ay

tlength m arrays Az

B EECECECT

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability
>1/2: en
fix) < Ailhi(x)] < f(x) + R

- What is Pr[f(x) < f(x) < f(x) + <2]? 1—1/2t.



Count-Min Sketch Analysis

Ay

tlength m arrays Az

B EECECECT

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability

>1/2: en

fx) < Ailhi ()] < f(x) + R

- What is Pr[f(x) < f(x) < f(x) + <2]? 1—1/2t.
- To get a good estimate with probability > 1— 4, set t = log,(1/4).



Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ¢! with probability > 1—4din
O (log(1/0) - R/€) space.

10



Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ¢! with probability > 1—4din
O (log(1/0) - R/€) space.

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency 7
and those with frequency (1 —€)7.

10



Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ¢! with probability > 1—4din
O (log(1/0) - R/€) space.

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency 7
and those with frequency (1 —€)7.

- How should we set ¢ if we want a good estimate for all
items at once, with 99% probability?

10



Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

n



Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

- When a new item comes in at step i/, check if its estimated
frequency is > i/k and store it if so.

- At step i remove any stored items whose estimated
frequency drops below i/k.

- Store at most O(R) items at once and have all items with
frequency > n/k stored at the end of the stream.

n



Questions on Frequent Items?

12



Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements in the stream.

Eg,
1,5,7,5,2,1 — 4 distinct elements

13



Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements in the stream.

Eg,
1,5,7,5,2,1 — 4 distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.

- Distinct values in a database column (for estimating sizes of
joins and group bys).

- Number of distinct search engine queries.

- Counting distinct motifs in large DNA sequences.

13



Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements in the stream.

Eg,
1,5,7,5,2,1 — 4 distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.

- Distinct values in a database column (for estimating sizes of
joins and group bys).

- Number of distinct search engine queries.

- Counting distinct motifs in large DNA sequences.
Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

13



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

S

-Tw

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

S

-Tw

0 h(x,)

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5

S
4 - —+
0 h(x,) 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5

S
4 ® ® —+
0 h(x,) h(x,) 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5

S
| o- —o— I
0 h (Xz) h(X1 ) 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5

S
| o- —o— I
0 h(x,) h(x;) h(xs) 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5

S
| o- —o— I
0 h(x,) h(x,) h(xs) 1
h(x,)

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5

S
—o—eo- —o— ;
0 h(xs) h(xp) h(x;) hixs) 1
h(x4)

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5

S
— —o- —o— I
0 h(xs) h(xp) h(x,) h(x;) 1

h(x,)
14



Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

- Leth: U — [0,1] be a random hash function (with a real valued output)
- Ss:i=1
- Fori=1,...,n
- s :=min(s, h(x))
- Returnd =1 —1

S
+—o—o— —o—
0 h(xs) hx;) h(x;) hix;) 1
h(x,)

15



Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

- Leth: U — [0,1] be a random hash function (with a real valued output)
- Ss:i=1
- Fori=1,...,n
- s :=min(s, h(x))
- Returnd =1 —1

S
+— —e— —o—+
0 h(xs) h(x,) h(x) hixg) 1
h(x,)

- After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

15



Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

- Leth: U — [0,1] be a random hash function (with a real valued output)
- Ss:i=1
- Fori=1,...,n
- s :=min(s, h(x))
- Returnd =1 —1

S
+— —e— —o—+
0 h(xs) h(x,) h(x) hixg) 1
h(x,)

- After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

- Intuition: The larger d is, the smaller we expect s to be.

15



Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

- Leth: U — [0,1] be a random hash function (with a real valued output)
- Ss:i=1
- Fori=1,...,n
- s :=min(s, h(x))
- Returnd =1 —1

S
+— —e— —o—+
0 h(xs) h(x,) h(x) hixg) 1
h(x,)

- After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

- Intuition: The larger d is, the smaller we expect s to be.

- Same idea as Flajolet-Martin algorithm and HyperLoglog, except
they use discrete hash functions. 15



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—o—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—o—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

E[s] =



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—o—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

1
d+1

E[s] = (using E(s) = /OO Pr(s > x)dx) + calculus)
0



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—0—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

1
d+1

E[s] = (using E(s) = /OO Pr(s > x)dx) + calculus)
0

1

- So our estimate d = -

expectation.

1is correct if s exactly equals its



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—0—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

1
d+1

E[s] = (using E(s) = /OO Pr(s > x)dx) + calculus)
0

- So our estimate d = 1 —Tis correct if s exactly equals its

expectation. Does this mean }E[a] =d?



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—0—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

1
d+1

E[s] = (using E(s) = /OO Pr(s > x)dx) + calculus)
0

- So our estimate d = 1 —Tis correct if s exactly equals its

expectation. Does this mean ]E[a] = d? No, but:



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—0—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

1
d+1

E[s] = (using E(s) = /OO Pr(s > x)dx) + calculus)
0

- So our estimate d = 1 —Tis correct if s exactly equals its

expectation. Does this mean ]E[a] = d? No, but:
- Approximation is robust: if |s — E[s]| < ¢- E[s] for any
e € (0,1/2) and a small constant ¢ < 4

(1—ce)d <d < (1+ce)d



Initial Concentration Bound

So question is how well s concentrates around its mean.

1

Bl =5

s: minimum of d diAstinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1: estimate of # distinct elements d.




Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = d1+1 and Var[s] < 1)2 (also via calculus).

(d+1

s: minimum of d diAstinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1: estimate of # distinct elements d.




Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = d1+1 and Var[s] < (also via calculus).

1
(d +1)?
Chebyshev's Inequality:

Var([s]
(eE[s])?

Prlls - E[s]| > €E[s]] <

s: minimum of d diAstinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1: estimate of # distinct elements d.




Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = d1+1 and Var[s] < (also via calculus).

1
(d +1)?
Chebyshev's Inequality:

(B[s])* e

Prlls — E[s]| > cE[s]] < sl _

s: minimum of d diAstinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1: estimate of # distinct elements d.




Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = d1+1 and Var[s] < (also via calculus).

1
(d +1)?
Chebyshev's Inequality:

(B[s])* e

Prlls — E[s]| > cE[s]] < sl _

Bound is vacuous for any e < 1.

s: minimum of d diAstinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1: estimate of # distinct elements d.




Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = d1+1 and Var[s] < (also via calculus).

1
(d +1)?
Chebyshev's Inequality:

Var[s] 1

(eE[s])? e’

Prlls - E[s]| > €E[s]] <

Bound is vacuous for any € < 1. How can we improve accuracy?

s: minimum of d diAstinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1: estimate of # distinct elements d.




Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

- Leth: U —[0,1] be a random hash function
csi=1
- Fori=1,...,n

- s:=min(s, h(x))

. Returna:g—T



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

- Lethy,hy, ... h - U—[0,1] be random hash functions
csi=1
- Fori=1,...,n

- s:=min(s, h(x))

. Returna:g—T



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

- Lethy,hy, ... hg: U—[0,1] be random hash functions
$1,S0,...,S; =1
- Fori=1,...,n

- S = min(S7 h(XI))

. Returna:g—T



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

- Lethy,hy, ... hg: U—[0,1] be random hash functions
*S1,S2,...,Sp =1
- Fori=1,...,n

- For j=1,...k, s; := min(s;, hj(x;))

. Returna:g—T



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

- Lethy,hy, ... hy - U—[0,1] be random hash functions

© 51,8,...,8¢ =1
- Fori=1,...,n

- For j=1,...k, s; := min(s;, hj(x;))
©Si= % Zf:W Sj

- Returnd =1 — 1

S



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

- Lethy,hy, ... hy - U—[0,1] be random hash functions

*S$1,S2,...,S, =1
- Fori=1,...,n
- For j:1,...,k, S = mil'l(S/'7 hJ(X,))
R
CSi= LS

. Returna:%—T

S, S, S,

4—0—0—00——00—)0-|1-
0



s = %Zf; s;. Have already shown that forj=1,..., k

1
d+1

1
Var([sj] < m

E[sj] =

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Z}; Sj.
d= % — 1: estimate of # distinct elements d.




s = %Zf; s;. Have already shown that forj=1,..., k

1
d+1

1
Var([sj] < m

Elsj] = = EJ9]

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Z}; Sj.
d= % — 1: estimate of # distinct elements d.




S = %Zf; s;. Have already shown that forj=1,..., k
1 1 . . .
Efsj] = T — E[s] = a5 (linearity of expectation)
1
Var([sj] < m

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Z}; Sj.
d= % — 1: estimate of # distinct elements d.




S = %Zf; s;. Have already shown that forj=1,..., k
1 1 . . .
Efsj] = T — E[s] = a5 (linearity of expectation)
1
Var([sj] < CEE)E = Var|g]

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Z}; Sj.
d= % — 1: estimate of # distinct elements d.




s = %Zf; s;. Have already shown that forj=1,..., k

E[sj] = dLM = E[s] = dLM (linearity of expectation)
<

Var[sj] < 1 = Var[s] (linearity of variance)

1
(d+1)? k- (d+1)2

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Z}; Sj.
d= % — 1: estimate of # distinct elements d.




s = %Zf; s;. Have already shown that forj=1,..., k

= E[s] = dL—H (linearity of expectation)

Var([sj] < (d—:—iﬂz = Var[s] <

1
Blsl =7

o (linearity of variance)
R-(d+1) y
Chebyshev Inequality:

Varls]
(eE[s])?

Pr{|s — E[s]| > €E[s]] <

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Zf; Sj.
d= % — 1: estimate of # distinct elements d.

19



s = %Zf; s;. Have already shown that forj=1,..., k

= E[s] = dL—H (linearity of expectation)

Var([sj] < (d—:—iﬂz = Var[s] <

1
Blsl =7

1 . . .
RCES)E (linearity of variance)
Chebyshev Inequality:

Var[s]  E[sP/kR 1
(eE[s])2  €E[s]2  k-e

Pr{|s — E[s]| > €E[s]] <

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Zf; Sj.
d= % — 1: estimate of # distinct elements d.

19



s = %Zf; s;. Have already shown that forj=1,..., k

= E[s] = dL—H (linearity of expectation)

Var([sj] < (d—:—iﬂz = Var[s] <

1
Blsl =7

1 . . .
RCES)E (linearity of variance)
Chebyshev Inequality:

Var[s]  E[sP/kR 1
(eE[s])2  €E[s]2  k-e

How should we set k if we want an error with probability at most §7?

Pr{|s — E[s]| > €E[s]] <

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Zf; Sj.
d= % — 1: estimate of # distinct elements d.

19



s = %Zf; s;. Have already shown that forj=1,..., k

= E[s] = dL—H (linearity of expectation)

Var([sj] < (d—:—iﬂz = Var[s] <

1
Blsl =7

_ (linearity of variance)
R-(d+1) y

Chebyshev Inequality:

Var[s]  E[s]?’/k 1

(eE[s])2  €E[s]2  k-e

How should we set k if we want an error with probability at most §7?
k=

Pr{|s — E[s]| > €E[s]] <

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Zf; Sj.
d= % — 1: estimate of # distinct elements d.

19



s = %Zf; s;. Have already shown that forj=1,..., k

= E[s] = dL—H (linearity of expectation)

Var([sj] < (d—:—iﬂz = Var[s] <

1
Blsl =7

o (linearity of variance)
R-(d+1) y

Chebyshev Inequality:

Var[s]  E[s]’/k 1 -6 5
(eE[s])?  €E[s]2 k- & 7
How should we set k if we want an error with probability at most §7?
k= .

Pr{|s — E[s]| > €E[s]] <

s;: minimum of d distinct hashes chosen randomly over [0,1]. s = % Zf; Sj.
d= % — 1: estimate of # distinct elements d.

19



Space Complexity

Hashing for Distinct Elements:

- Lethy, hy,... hy,: U—[0,1] be random hash functions

©S$1,S2,...,5:=1
- Fori=1,...,n

- For j:1,..., k, S = r‘l’]il’](Sj7 h}(X,))
T Si= %Zfﬁ Sj

- Returnd = 1 — 1

S
$, S, S,

—_—— = -+
0 1

+ Setting k = L5, algorithm returns d with |d — a| < 4e - d with
probability at least 1 — 4.

20



Space Complexity

Hashing for Distinct Elements:

- Lethy, hy,... hy,: U—[0,1] be random hash functions

©S$1,S2,...,5:=1
- Fori=1,...,n

- For j:1,..., k, S = r‘l’]il’](Sj7 h}(X,))
T Si= %Zfﬁ Sj

- Returnd = 1 — 1

S

S S S
—_—— = -+
0 1

+ Setting k = L5, algorithm returns d with |d — a| < 4e - d with
probability at least 1 — 4.

- Space complexity is k = —= real numbers sy, ..., Sk.

20



Space Complexity

Hashing for Distinct Elements:

- Lethy, hy,... hy,: U—[0,1] be random hash functions

©S$1,S2,...,5:=1
- Fori=1,...,n

- For j:1,..., k, S = r‘l’]il’](Sj7 h}(X,))
T Si= %Zfﬁ Sj

* Returnd ={ —1
$,'S, S,
—_—— = -+
0 1

+ Setting k = L5, algorithm returns d with |d — a| < 4e - d with
probability at least 1 — 4.

) G
Space complexity is k = - real numbers sy, ..., Sk.

- 0 = 5% failure rate gives a factor 20 overhead in space

complexity. 20



Improved Failure Rate

How can we improve our dependence on the failure rate 67

21



Improved Failure Rate

How can we improve our dependence on the failure rate §?

The median trick: Run t = O(log 1/4) trials each with failure
probability 8’ = 1/5 - each using k = = 2 hash functions.

1
&' €?

21



Improved Failure Rate

How can we improve our dependence on the failure rate §?

The median trick: Run t = O(log 1/4) trials each with failure
probability 8’ = 1/5 - each using k = = 2 hash functions.

1
&' €?

- Letting 81, . ,at be the outcomes of the t trials, return
d = median(dy, ..., dy).

21



Improved Failure Rate

How can we improve our dependence on the failure rate §?

The median trick: Run t = O(log 1/4) trials each with failure
probability &' = 1/5 - each using k = 5> = 3 hash functions.

&' €?

- Letting 81, . ,at be the outcomes of the t trials, return
d = median(dy,...,d

median d

ds d, d;|d,d, d,

(1—48)d d (1+48)d

21



Improved Failure Rate

How can we improve our dependence on the failure rate §?

The median trick: Run t = O(log 1/4) trials each with failure
probability 8’ = 1/5 - each using k = = 2 hash functions.

1
&' €?

- Letting 81, . ,at be the outcomes of the t trials, return
d = median(dy,...,d
>1/2
A
[ \
median d

ds d, d;|d,d, d,

(1—48)d d (1+48)d

- If > 1/2 of trials fall in [(1 — 4€)d, (1 + 4¢€)d], then the median
will.

21



Improved Failure Rate

How can we improve our dependence on the failure rate §?

The median trick: Run t = O(log 1/4) trials each with failure
probability 8’ = 1/5 - each using k = = 2 hash functions.

1
&' €?

- Letting 81, . ,at be the outcomes of the t trials, return
d = median(dy,...,d
>1/2
|
[ \
median d
ds d, d;|d,dg d,

(1—48)d d (1+48)d

- If > 1/2 of trials fall in [(1 — 4€)d, (1 + 4¢€)d], then the median
will.

- Have < 1/2 of trials on both the left and right.
2



Improved Failure Rate

How can we improve our dependence on the failure rate §?

The median trick: Run t = O(log 1/4) trials each with failure
probability 8’ = 1/5 - each using k = = 2 hash functions.

1
&' €?

- Letting 81, . ,at be the outcomes of the t trials, return
d = median(dy,...,d
>1/2
|
[ \
median d
ds d, d;|d,dg d,

(1—48)d d (1+48)d

- If > 2/3 of trials fall in [(1 — 4€)d, (1 + 4¢)d], then the median
will.

- Have < 1/3 of trials on both the left and right.
21



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

s d = median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?
- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].

Pr (a ¢ [(1— se)d, (1 + 4e)d]) < Pr <x < % : t)

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].
E[X] =

Pr (a ¢ [(1— se)d, (1 + 4e)d]) < Pr <x < % : t)

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].
EX] =zt

Pr (a ¢ [(1— se)d, (1 + 4e)d]) < Pr <x < % : t)

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].
EX] =zt

Pr(d ¢ [(1— 4e)d, (1 + 4e)d]) < Pr <x < % - E[X])

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].
EX] =zt

Pr (a ¢ [(1— se)d, (1 + 4e)d]) < Pr <x < g ~IE[X]) <Pr (|x —E[X]| > ;E[X])

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].
EX] =zt

Pr (a ¢ [(1— se)d, (1 + 4e)d]) < Pr <x < g ~IE[X]) <Pr (|x —E[X]| > ;E[X])

Apply Chernoff bound:

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].
EX] =zt

Pr (a ¢ [(1— se)d, (1 + 4e)d]) < Pr <x < g ~IE[X]) <Pr (|x —E[X]| > ;E[X])

Apply Chernoff bound:

12 4
Pr (|X —EX]| > ;E[X]) < 2exp (—26+ 1?2) =0(e ).

22



The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

o~

- d= median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?

- Let X be the # of trials falling in [(1 — 4e)d, (1 + 4e)d].
EX] =zt

Pr (a ¢ [(1— se)d, (1 + 4e)d]) < Pr <x < g ~IE[X]) <Pr (|x —E[X]| > ;E[X])
Apply Chernoff bound:

1 12, At
_ > < __6 5 _ —ct )
Pr (|X E[X]| > 6E[X]) _2exp< 2+1/6> 0 (e )
- Setting t = O(log(1/6)) gives failure probability e~ '08(1/%) = 4.

22



Median Trick

Upshot: The median of t = O(log(1/9)) independent runs of
the hashing algorithm for distinct elements returns
d € [(1— 4e)d, (14 4e)d] with probability at least 1 — 4.

23



Median Trick

Upshot: The median of t = O(log(1/9)) independent runs of
the hashing algorithm for distinct elements returns
d € [(1— 4e)d, (14 4e)d] with probability at least 1 — 4.

Total Space Complexity: t trials, each using k = 6215/ hash
functions, for & = 1/5. Space is % =0 (M) real numbers

€

(the minimum value of each hash function).

23



Median Trick

Upshot: The median of t = O(log(1/9)) independent runs of
the hashing algorithm for distinct elements returns
d € [(1— 4e)d, (14 4e)d] with probability at least 1 — 4.

Total Space Complexity: t trials, each using k = 6215/ hash
functions, for & = 1/5. Space is % =0 (M) real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

23



Median Trick

Upshot: The median of t = O(log(1/9)) independent runs of
the hashing algorithm for distinct elements returns

d € [(1— 4e)d, (14 4e)d] with probability at least 1 — 4.

Total Space Complexity: t trials, each using k = 6215/ hash
functions, for & = 1/5. Space is % =0 (M) real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g,, heavy
tailed distributions, corrupted data).

23



