COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 8

Summary

Last Class:

- Finish up Bloom Filters and optimization of number of hash functions.
- · Start on streaming algorithms.
- Introduce the frequent items problem and its applications.
- · Start on the Count-Min sketch algorithm for frequent items.

This Class:

- · Analysis of Count-Min sketch .
- Start on distinct items counting problem.

Approximate Frequent Elements

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

- To solve this problem, it suffices to estimate the frequency f(x) of each item x up to error $\pm \frac{\epsilon n}{k}$.
- Will discuss later how to maintain the list of top items in small space.

Count-min sketch:

random hash function h

m length array **A** 0 0 0 0 0 0 0 0 0 0

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[h(x)] \ge f(x)$.

• $A[\mathbf{h}(x)]$ counts the number of occurrences of any y with $\mathbf{h}(y) = \mathbf{h}(x)$, including x itself.

Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[h(x)] \ge f(x)$.

- $A[\mathbf{h}(x)]$ counts the number of occurrences of any y with $\mathbf{h}(y) = \mathbf{h}(x)$, including x itself.
- $A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y).$

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x) \\ \text{error in frequency estimate}}} f(y) .$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) .$$

error in frequency estimate

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] =$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \Pr(h(y) = h(x)) \cdot f(y)$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) .$$

Expected Error:

error in frequency estimate

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y)$$

$$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \Pr(h(y) = h(x)) \cdot f(y)$$

$$=\sum_{y\neq x}\frac{1}{m}\cdot f(y)=\frac{1}{m}\cdot (n-f(x))\leq \frac{n}{m}$$

error in frequency estimate

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) .$$

Expected Error:

error in frequency estimate

$$\mathbb{E}\left[\sum_{y\neq x: h(y)=h(x)} f(y)\right] = \sum_{y\neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) .$$

Expected Error:

error in frequency estimate

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality:
$$\Pr\left[\sum_{y\neq x:h(y)=h(x)}f(y)\geq \frac{2n}{m}\right]\leq \frac{1}{2}.$$

$$A[h(x)] = f(x) + \sum_{\substack{y \neq x: h(y) = h(x)}} f(y) .$$

Expected Error:

error in frequency estimate

$$\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality:
$$\Pr\left[\sum_{y\neq x:h(y)=h(x)}f(y)\geq \frac{2n}{m}\right]\leq \frac{1}{2}.$$

What property of h is required to show this bound? a) fully random b) pairwise independent c) 2-universal d) locality sensitive

Claim: For any x, with probability at least 1/2,

$$f(x) \le A[\mathbf{h}(x)] \le f(x) + \frac{2n}{m}.$$

Claim: For any x, with probability at least 1/2,

$$f(x) \le A[h(x)] \le f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$.

Claim: For any x, with probability at least 1/2,

$$f(x) \le A[h(x)] \le f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$. How can we improve the success probability?

Claim: For any x, with probability at least 1/2,

$$f(x) \le A[h(x)] \le f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$. How can we improve the success probability? Repetition.

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (Count-min sketch)

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (Count-min sketch)

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (Count-min sketch) Why min instead of taking the average?

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (Count-min sketch)

Why min instead of taking the average? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

Count-Min Sketch Analysis

Estimate
$$f(x)$$
 by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

Count-Min Sketch Analysis

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$

Count-Min Sketch Analysis

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$

• What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$?

Count-Min Sketch Analysis

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$

• What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 - 1/2^t$.

Count-Min Sketch Analysis

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$
- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 1/2^t$.
- To get a good estimate with probability $\geq 1 \delta$, set $t = \log_2(1/\delta)$.

Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of each item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of each item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

• Accurate enough to solve the (ϵ, k) -Frequent elements problem – distinquish between items with frequency $\frac{n}{k}$ and those with frequency $(1 - \epsilon)\frac{n}{k}$.

Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of each item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

- Accurate enough to solve the (ϵ, k) -Frequent elements problem distinguish between items with frequency $\frac{n}{k}$ and those with frequency $(1 \epsilon)\frac{n}{k}$.
- How should we set δ if we want a good estimate for all items at once, with 99% probability?

Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

One approach:

- When a new item comes in at step i, check if its estimated frequency is $\geq i/k$ and store it if so.
- At step i remove any stored items whose estimated frequency drops below i/k.
- Store at most O(k) items at once and have all items with frequency $\geq n/k$ stored at the end of the stream.

Questions on Frequent Items?

Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements in the stream. E.g.,

 $1, 5, 7, 5, 2, 1 \rightarrow 4$ distinct elements

Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements in the stream. E.g.,

 $1, 5, 7, 5, 2, 1 \rightarrow 4$ distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.
- Distinct values in a database column (for estimating sizes of joins and group bys).
- Number of distinct search engine queries.
- · Counting distinct motifs in large DNA sequences.

Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements in the stream. E.g.,

 $1, 5, 7, 5, 2, 1 \rightarrow 4$ distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.
- Distinct values in a database column (for estimating sizes of joins and group bys).
- Number of distinct search engine queries.
- · Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}:U\to[0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i=1,\ldots,n$
 - $\cdot s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}:U\to[0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}:U\to[0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $s := \min(s, h(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $s := \min(s, h(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $\cdot s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $\cdot s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{\epsilon} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}:U\to[0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $\cdot s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $\cdot s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{\epsilon} 1$

Distinct Elements (Count-Distinct) Problem: Given a stream x_1, \ldots, x_n , estimate the number of distinct elements.

- Let $\mathbf{h}:U\to[0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $\cdot s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{\epsilon} 1$

Min-Hashing for Distinct Elements:

- Let $h: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $s := \min(s, h(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

Min-Hashing for Distinct Elements:

- Let $h: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - \cdot s := min(s, h(x_i))
- Return $\tilde{d} = \frac{1}{s} 1$

 After all items are processed, s is the minimum of d points chosen uniformly at random on [0,1]. Where d = # distinct elements.

Min-Hashing for Distinct Elements:

- Let $h: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $\cdot s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

- After all items are processed, s is the minimum of d points chosen uniformly at random on [0,1]. Where d = # distinct elements.
- Intuition: The larger d is, the smaller we expect s to be.

Min-Hashing for Distinct Elements:

- Let $h: U \to [0,1]$ be a random hash function (with a real valued output)
- s := 1
- For $i = 1, \ldots, n$
 - $\cdot s := \min(s, \mathbf{h}(x_i))$
- Return $\tilde{d} = \frac{1}{s} 1$

- After all items are processed, s is the minimum of d points chosen uniformly at random on [0,1]. Where d = # distinct elements.
- Intuition: The larger d is, the smaller we expect s to be.
- Same idea as Flajolet-Martin algorithm and HyperLogLog, except they use discrete hash functions.

s is the minimum of d points chosen uniformly at random on [0, 1]. Where d = # distinct elements.

s is the minimum of d points chosen uniformly at random on [0, 1]. Where d = # distinct elements.

$$\mathbb{E}[\textbf{s}] =$$

s is the minimum of d points chosen uniformly at random on [0, 1]. Where d = # distinct elements.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (using } \mathbb{E}(\mathbf{s}) = \int_0^\infty \Pr(\mathbf{s} > x) dx) + \text{calculus)}$$

s is the minimum of d points chosen uniformly at random on [0, 1]. Where d = # distinct elements.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (using } \mathbb{E}(\mathbf{s}) = \int_0^\infty \Pr(\mathbf{s} > x) dx) + \text{calculus)}$$

• So our estimate $\widehat{\mathbf{d}} = \frac{1}{s} - 1$ is correct if \mathbf{s} exactly equals its expectation.

s is the minimum of d points chosen uniformly at random on [0, 1]. Where d = # distinct elements.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (using } \mathbb{E}(\mathbf{s}) = \int_0^\infty \Pr(\mathbf{s} > x) dx) + \text{calculus)}$$

• So our estimate $\hat{\mathbf{d}} = \frac{1}{s} - 1$ is correct if \mathbf{s} exactly equals its expectation. Does this mean $\mathbb{E}[\hat{\mathbf{d}}] = d$?

s is the minimum of d points chosen uniformly at random on [0, 1]. Where d = # distinct elements.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (using } \mathbb{E}(\mathbf{s}) = \int_0^\infty \Pr(\mathbf{s} > x) dx) + \text{calculus)}$$

• So our estimate $\hat{\mathbf{d}} = \frac{1}{s} - 1$ is correct if \mathbf{s} exactly equals its expectation. Does this mean $\mathbb{E}[\hat{\mathbf{d}}] = d$? No, but:

s is the minimum of d points chosen uniformly at random on [0, 1]. Where d = # distinct elements.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (using } \mathbb{E}(\mathbf{s}) = \int_0^\infty \Pr(\mathbf{s} > x) dx) + \text{calculus)}$$

- So our estimate $\hat{\mathbf{d}} = \frac{1}{s} 1$ is correct if \mathbf{s} exactly equals its expectation. Does this mean $\mathbb{E}[\widehat{\mathbf{d}}] = d$? No, but:
- Approximation is robust: if $|s \mathbb{E}[s]| \le \epsilon \cdot \mathbb{E}[s]$ for any $\epsilon \in (0, 1/2)$ and a small constant $c \le 4$:

$$(1-c\epsilon)d \leq \widehat{\mathbf{d}} \leq (1+c\epsilon)d$$

16

Initial Concentration Bound

So question is how well **s** concentrates around its mean.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1}$$

s: minimum of d distinct hashes chosen randomly over [0,1], computed by hashing algorithm. $\hat{\mathbf{d}} = \frac{1}{5} - 1$: estimate of # distinct elements d.

Initial Concentration Bound

So question is how well **s** concentrates around its mean.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1}$$
 and $Var[\mathbf{s}] \leq \frac{1}{(d+1)^2}$ (also via calculus).

s: minimum of d distinct hashes chosen randomly over [0,1], computed by hashing algorithm. $\widehat{\mathbf{d}} = \frac{1}{s} - 1$: estimate of # distinct elements d.

Initial Concentration Bound

So question is how well **s** concentrates around its mean.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1}$$
 and $Var[\mathbf{s}] \leq \frac{1}{(d+1)^2}$ (also via calculus).

Chebyshev's Inequality:

$$\Pr[|\mathsf{s} - \mathbb{E}[\mathsf{s}]| \ge \epsilon \mathbb{E}[\mathsf{s}]] \le \frac{\mathsf{Var}[\mathsf{s}]}{(\epsilon \mathbb{E}[\mathsf{s}])^2}$$

s: minimum of d distinct hashes chosen randomly over [0,1], computed by hashing algorithm. $\hat{\mathbf{d}} = \frac{1}{5} - 1$: estimate of # distinct elements d.

Initial Concentration Bound

So question is how well **s** concentrates around its mean.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1}$$
 and $\operatorname{Var}[\mathbf{s}] \leq \frac{1}{(d+1)^2}$ (also via calculus).

Chebyshev's Inequality:

$$\Pr[|\mathbf{s} - \mathbb{E}[\mathbf{s}]| \ge \epsilon \mathbb{E}[\mathbf{s}]] \le \frac{\operatorname{Var}[\mathbf{s}]}{(\epsilon \mathbb{E}[\mathbf{s}])^2} = \frac{1}{\epsilon^2}.$$

s: minimum of d distinct hashes chosen randomly over [0,1], computed by hashing algorithm. $\hat{\mathbf{d}} = \frac{1}{5} - 1$: estimate of # distinct elements d.

Initial Concentration Bound

So question is how well **s** concentrates around its mean.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1}$$
 and $Var[\mathbf{s}] \leq \frac{1}{(d+1)^2}$ (also via calculus).

Chebyshev's Inequality:

$$\Pr[|\mathsf{S} - \mathbb{E}[\mathsf{S}]| \ge \epsilon \mathbb{E}[\mathsf{S}]] \le \frac{\mathsf{Var}[\mathsf{S}]}{(\epsilon \mathbb{E}[\mathsf{S}])^2} = \frac{1}{\epsilon^2}.$$

Bound is vacuous for any $\epsilon < 1$.

s: minimum of d distinct hashes chosen randomly over [0,1], computed by hashing algorithm. $\widehat{\mathbf{d}} = \frac{1}{s} - 1$: estimate of # distinct elements d.

Initial Concentration Bound

So question is how well **s** concentrates around its mean.

$$\mathbb{E}[\mathbf{s}] = \frac{1}{d+1}$$
 and $Var[\mathbf{s}] \leq \frac{1}{(d+1)^2}$ (also via calculus).

Chebyshev's Inequality:

$$\Pr[|\mathbf{s} - \mathbb{E}[\mathbf{s}]| \ge \epsilon \mathbb{E}[\mathbf{s}]] \le \frac{\mathsf{Var}[\mathbf{s}]}{(\epsilon \mathbb{E}[\mathbf{s}])^2} = \frac{1}{\epsilon^2}.$$

Bound is vacuous for any ϵ < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0,1], computed by hashing algorithm. $\hat{\mathbf{d}} = \frac{1}{s} - 1$: estimate of # distinct elements d.

Leverage the law of large numbers: improve accuracy via repeated independent trials.

Leverage the law of large numbers: improve accuracy via repeated independent trials.

- Let $\mathbf{h}:U\to[0,1]$ be a random hash function
- s := 1
- For $i = 1, \ldots, n$
 - $s := \min(s, h(x_i))$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

Leverage the law of large numbers: improve accuracy via repeated independent trials.

- Let $h_1, h_2, \dots, h_k : U \to [0, 1]$ be random hash functions
- s := 1
- For $i = 1, \ldots, n$
 - $s := \min(s, h(x_i))$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

Leverage the law of large numbers: improve accuracy via repeated independent trials.

- Let $\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_k : U \to [0, 1]$ be random hash functions
- $s_1, s_2, \ldots, s_k := 1$
- For $i = 1, \ldots, n$
 - $s := \min(s, h(x_i))$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

Leverage the law of large numbers: improve accuracy via repeated independent trials.

- Let $h_1, h_2, \dots, h_k : U \to [0, 1]$ be random hash functions
- $s_1, s_2, \ldots, s_k := 1$
- For $i = 1, \ldots, n$
 - For j=1,...,k, $\mathbf{s}_j := \min(\mathbf{s}_j, \mathbf{h}_j(x_i))$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

Leverage the law of large numbers: improve accuracy via repeated independent trials.

- Let $h_1, h_2, \dots, h_k : U \to [0, 1]$ be random hash functions
- · $s_1, s_2, \ldots, s_k := 1$
- For $i = 1, \ldots, n$
 - For j=1,...,k, $\mathbf{s}_j := \min(\mathbf{s}_j, \mathbf{h}_j(x_i))$
- $\mathbf{s} := \frac{1}{k} \sum_{j=1}^k \mathbf{s}_j$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

Leverage the law of large numbers: improve accuracy via repeated independent trials.

- Let $h_1, h_2, \dots, h_k : U \to [0, 1]$ be random hash functions
- · $s_1, s_2, \ldots, s_k := 1$
- For $i = 1, \ldots, n$

• For j=1,...,k,
$$\mathbf{s}_j := \min(\mathbf{s}_j, \mathbf{h}_j(x_i))$$

- $\mathbf{s} := \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_j$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$$
. Have already shown that for $j = 1, \dots, k$:

$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1}$$

$$\operatorname{Var}[\mathbf{s}_j] \le \frac{1}{(d+1)^2}$$

 \mathbf{s}_{j} : minimum of d distinct hashes chosen randomly over [0, 1]. $\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$. $\widehat{\mathbf{d}} = \frac{1}{\mathbf{s}} - 1$: estimate of # distinct elements d.

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$$
. Have already shown that for $j = 1, \dots, k$:

$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}]$$

$$\operatorname{Var}[\mathbf{s}_j] \le \frac{1}{(d+1)^2}$$

 \mathbf{s}_{j} : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s}=\frac{1}{k}\sum_{j=1}^{k}\mathbf{s}_{j}$. $\widehat{\mathbf{d}}=\frac{1}{s}-1$: estimate of # distinct elements d.

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^k \mathbf{s}_j$$
. Have already shown that for $j = 1, \dots, k$:
$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (linearity of expectation)}$$

$$\mathsf{Var}[\mathbf{s}_j] \leq \frac{1}{(d+1)^2}$$

 \mathbf{s}_{j} : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$. $\widehat{\mathbf{d}} = \frac{1}{\mathbf{s}} - 1$: estimate of # distinct elements d.

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^k \mathbf{s}_j$$
. Have already shown that for $j = 1, \dots, k$:
$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (linearity of expectation)}$$

$$\mathsf{Var}[\mathbf{s}_j] \leq \frac{1}{(d+1)^2} \implies \mathsf{Var}[\mathbf{s}]$$

 \mathbf{s}_j : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s}=\frac{1}{k}\sum_{j=1}^k\mathbf{s}_j$. $\widehat{\mathbf{d}}=\frac{1}{\mathbf{s}}-1$: estimate of # distinct elements d.

$$\begin{split} \mathbf{s} &= \frac{1}{k} \sum_{j=1}^k \mathbf{s}_j. \text{ Have already shown that for } j = 1, \dots, k: \\ &\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (linearity of expectation)} \\ &\text{Var}[\mathbf{s}_j] \leq \frac{1}{(d+1)^2} \implies \text{Var}[\mathbf{s}] \leq \frac{1}{k \cdot (d+1)^2} \text{ (linearity of variance)} \end{split}$$

 \mathbf{s}_j : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s} = \frac{1}{k} \sum_{j=1}^k \mathbf{s}_j$. $\widehat{\mathbf{d}} = \frac{1}{\mathbf{s}} - 1$: estimate of # distinct elements d.

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$$
. Have already shown that for $j = 1, \dots, k$:

$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (linearity of expectation)}$$

$$\mathsf{Var}[\mathbf{s}_j] \leq \frac{1}{(d+1)^2} \implies \mathsf{Var}[\mathbf{s}] \leq \frac{1}{k \cdot (d+1)^2} \text{ (linearity of variance)}$$

Chebyshev Inequality:

$$\Pr\left[|\mathsf{S} - \mathbb{E}[\mathsf{S}]
ight] \geq \epsilon \mathbb{E}[\mathsf{S}] \leq rac{\mathsf{Var}[\mathsf{S}]}{(\epsilon \mathbb{E}[\mathsf{S}])^2}$$

 \mathbf{s}_{j} : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$. $\widehat{\mathbf{d}} = \frac{1}{\mathsf{s}} - 1$: estimate of # distinct elements d.

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$$
. Have already shown that for $j = 1, \dots, k$:

$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (linearity of expectation)}$$

$$\mathsf{Var}[\mathbf{s}_j] \leq \frac{1}{(d+1)^2} \implies \mathsf{Var}[\mathbf{s}] \leq \frac{1}{k \cdot (d+1)^2} \text{ (linearity of variance)}$$

Chebyshev Inequality:

$$\Pr[|\mathsf{s} - \mathbb{E}[\mathsf{s}]| \ge \epsilon \mathbb{E}[\mathsf{s}]] \le \frac{\mathsf{Var}[\mathsf{s}]}{(\epsilon \mathbb{E}[\mathsf{s}])^2} = \frac{\mathbb{E}[\mathsf{s}]^2/k}{\epsilon^2 \mathbb{E}[\mathsf{s}]^2} = \frac{1}{k \cdot \epsilon^2}$$

 \mathbf{s}_{j} : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s}=\frac{1}{k}\sum_{j=1}^{k}\mathbf{s}_{j}$. $\widehat{\mathbf{d}}=\frac{1}{\mathsf{s}}-1$: estimate of # distinct elements d.

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$$
. Have already shown that for $j = 1, \dots, k$:

$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (linearity of expectation)}$$

$$\mathsf{Var}[\mathbf{s}_j] \leq \frac{1}{(d+1)^2} \implies \mathsf{Var}[\mathbf{s}] \leq \frac{1}{k \cdot (d+1)^2} \text{ (linearity of variance)}$$

Chebyshev Inequality:

$$\Pr[|\mathsf{s} - \mathbb{E}[\mathsf{s}]| \ge \epsilon \mathbb{E}[\mathsf{s}]] \le \frac{\mathsf{Var}[\mathsf{s}]}{(\epsilon \mathbb{E}[\mathsf{s}])^2} = \frac{\mathbb{E}[\mathsf{s}]^2/k}{\epsilon^2 \mathbb{E}[\mathsf{s}]^2} = \frac{1}{k \cdot \epsilon^2}$$

How should we set k if we want an error with probability at most δ ?

 \mathbf{s}_j : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s}=\frac{1}{k}\sum_{j=1}^k \mathbf{s}_j$. $\widehat{\mathbf{d}}=\frac{1}{\mathbf{s}}-1$: estimate of # distinct elements d.

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$$
. Have already shown that for $j = 1, \dots, k$:

$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (linearity of expectation)}$$

$$\operatorname{Var}[\mathbf{s}_j] \leq \frac{1}{(d+1)^2} \implies \operatorname{Var}[\mathbf{s}] \leq \frac{1}{k \cdot (d+1)^2} \text{ (linearity of variance)}$$

Chebyshev Inequality:

$$\Pr[|\mathbf{s} - \mathbb{E}[\mathbf{s}]| \ge \epsilon \mathbb{E}[\mathbf{s}]] \le \frac{\mathsf{Var}[\mathbf{s}]}{(\epsilon \mathbb{E}[\mathbf{s}])^2} = \frac{\mathbb{E}[\mathbf{s}]^2/k}{\epsilon^2 \mathbb{E}[\mathbf{s}]^2} = \frac{1}{k \cdot \epsilon^2}$$

How should we set k if we want an error with probability at most δ ? $k = \frac{1}{\epsilon^2 \cdot \delta}$.

 \mathbf{s}_j : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s}=\frac{1}{k}\sum_{j=1}^k \mathbf{s}_j$. $\widehat{\mathbf{d}}=\frac{1}{s}-1$: estimate of # distinct elements d.

$$\mathbf{s} = \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_{j}$$
. Have already shown that for $j = 1, \dots, k$:

$$\mathbb{E}[\mathbf{s}_j] = \frac{1}{d+1} \implies \mathbb{E}[\mathbf{s}] = \frac{1}{d+1} \text{ (linearity of expectation)}$$

$$\mathsf{Var}[\mathbf{s}_j] \leq \frac{1}{(d+1)^2} \implies \mathsf{Var}[\mathbf{s}] \leq \frac{1}{k \cdot (d+1)^2} \text{ (linearity of variance)}$$

Chebyshev Inequality:

$$\Pr\left[|\mathbf{s} - \mathbb{E}[\mathbf{s}]\right] \ge \epsilon \mathbb{E}[\mathbf{s}]\right] \le \frac{\mathsf{Var}[\mathbf{s}]}{(\epsilon \mathbb{E}[\mathbf{s}])^2} = \frac{\mathbb{E}[\mathbf{s}]^2/k}{\epsilon^2 \mathbb{E}[\mathbf{s}]^2} = \frac{1}{k \cdot \epsilon^2} = \frac{\epsilon^2 \cdot \delta}{\epsilon^2} = \delta.$$

How should we set k if we want an error with probability at most δ ? $k = \frac{1}{\epsilon^2 \cdot \delta}$.

 \mathbf{s}_j : minimum of d distinct hashes chosen randomly over [0,1]. $\mathbf{s}=\frac{1}{k}\sum_{j=1}^k \mathbf{s}_j$. $\widehat{\mathbf{d}}=\frac{1}{s}-1$: estimate of # distinct elements d.

Space Complexity

Hashing for Distinct Elements:

- Let $h_1, h_2, \ldots, h_k : U \to [0, 1]$ be random hash functions
- $s_1, s_2, \ldots, s_k := 1$
- For $i = 1, \ldots, n$

• For j=1,..., k,
$$s_j := \min(s_j, h_j(x_i))$$

- $\mathbf{s} := \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_j$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

• Setting $k = \frac{1}{\epsilon^2 \cdot \delta}$, algorithm returns $\hat{\mathbf{d}}$ with $|d - \hat{\mathbf{d}}| \le 4\epsilon \cdot d$ with probability at least $1 - \delta$.

Space Complexity

Hashing for Distinct Elements:

- Let $h_1, h_2, \dots, h_k : U \to [0, 1]$ be random hash functions
- $s_1, s_2, \ldots, s_k := 1$
- For $i = 1, \ldots, n$

• For j=1,..., k,
$$s_j := \min(s_j, h_j(x_i))$$

- $\mathbf{s} := \frac{1}{k} \sum_{j=1}^{k} \mathbf{s}_j$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

- Setting $k = \frac{1}{\epsilon^2 \cdot \delta}$, algorithm returns $\hat{\mathbf{d}}$ with $|d \hat{\mathbf{d}}| \le 4\epsilon \cdot d$ with probability at least 1δ .
- Space complexity is $k = \frac{1}{\epsilon^2 \cdot \delta}$ real numbers s_1, \dots, s_k .

Space Complexity

Hashing for Distinct Elements:

- Let $h_1, h_2, \dots, h_k : U \to [0, 1]$ be random hash functions
- $s_1, s_2, \ldots, s_k := 1$
- For $i = 1, \ldots, n$

• For j=1,..., k,
$$\mathbf{s}_j := \min(\mathbf{s}_j, \mathbf{h}_j(x_i))$$

- $\mathbf{S} := \frac{1}{k} \sum_{j=1}^{k} \mathbf{S}_j$
- Return $\hat{\mathbf{d}} = \frac{1}{s} 1$

- Setting $k = \frac{1}{\epsilon^2 \cdot \delta}$, algorithm returns $\hat{\mathbf{d}}$ with $|d \hat{\mathbf{d}}| \le 4\epsilon \cdot d$ with probability at least 1δ .
- Space complexity is $k = \frac{1}{\epsilon^2 \cdot \delta}$ real numbers s_1, \dots, s_k .
- $\delta = 5\%$ failure rate gives a factor 20 overhead in space complexity.

How can we improve our dependence on the failure rate δ ?

How can we improve our dependence on the failure rate δ ?

The median trick: Run $t = O(\log 1/\delta)$ trials each with failure probability $\delta' = 1/5$ – each using $k = \frac{1}{\delta' \epsilon^2} = \frac{5}{\epsilon^2}$ hash functions.

How can we improve our dependence on the failure rate δ ?

The median trick: Run $t = O(\log 1/\delta)$ trials each with failure probability $\delta' = 1/5$ – each using $k = \frac{1}{\delta' \epsilon^2} = \frac{5}{\epsilon^2}$ hash functions.

· Letting $\widehat{d}_1,\ldots,\widehat{d}_t$ be the outcomes of the t trials, return $\widehat{d}=median(\widehat{d}_1,\ldots,\widehat{d}_t)$.

How can we improve our dependence on the failure rate δ ?

The median trick: Run $t = O(\log 1/\delta)$ trials each with failure probability $\delta' = 1/5$ – each using $k = \frac{1}{\delta' \epsilon^2} = \frac{5}{\epsilon^2}$ hash functions.

• Letting $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ be the outcomes of the t trials, return $\hat{\mathbf{d}} = median(\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t)$

How can we improve our dependence on the failure rate δ ?

The median trick: Run $t = O(\log 1/\delta)$ trials each with failure probability $\delta' = 1/5$ – each using $k = \frac{1}{\delta' \epsilon^2} = \frac{5}{\epsilon^2}$ hash functions.

• Letting $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ be the outcomes of the t trials, return $\hat{\mathbf{d}} = median(\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t)$

• If > 1/2 of trials fall in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$, then the median will.

How can we improve our dependence on the failure rate δ ?

The median trick: Run $t = O(\log 1/\delta)$ trials each with failure probability $\delta' = 1/5$ – each using $k = \frac{1}{\delta' \epsilon^2} = \frac{5}{\epsilon^2}$ hash functions.

• Letting $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ be the outcomes of the t trials, return $\hat{\mathbf{d}} = median(\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t)$

- If > 1/2 of trials fall in $[(1 4\epsilon)d, (1 + 4\epsilon)d]$, then the median will.
- Have < 1/2 of trials on both the left and right.

How can we improve our dependence on the failure rate δ ?

The median trick: Run $t = O(\log 1/\delta)$ trials each with failure probability $\delta' = 1/5$ – each using $k = \frac{1}{\delta'\epsilon^2} = \frac{5}{\epsilon^2}$ hash functions.

• Letting $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ be the outcomes of the t trials, return $\hat{\mathbf{d}} = median(\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t)$

- If > 2/3 of trials fall in $[(1-4\epsilon)d, (1+4\epsilon)d]$, then the median will.
- Have < 1/3 of trials on both the left and right.

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let **X** be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$.

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let **X** be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$.

$$\Pr\left(\widehat{\mathbf{d}} \notin [(1-4\epsilon)d, (1+4\epsilon)d]\right) \leq \Pr\left(\mathbf{X} < \frac{2}{3} \cdot t\right)$$

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let X be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$. $\mathbb{E}[X] =$

$$\Pr\left(\widehat{\mathsf{d}} \notin [(1-4\epsilon)d, (1+4\epsilon)d]\right) \le \Pr\left(\mathsf{X} < \frac{2}{3} \cdot t\right)$$

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let X be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$. $\mathbb{E}[X] = \frac{4}{5} \cdot t$.

$$\Pr\left(\widehat{\mathsf{d}} \notin [(1-4\epsilon)d, (1+4\epsilon)d]\right) \le \Pr\left(\mathsf{X} < \frac{2}{3} \cdot t\right)$$

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1 4\epsilon)d, (1 + 4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let X be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$. $\mathbb{E}[X] = \frac{4}{5} \cdot t$.

$$\Pr\left(\widehat{\mathsf{d}} \notin [(1-4\epsilon)d, (1+4\epsilon)d]\right) \leq \Pr\left(\mathsf{X} < \frac{5}{6} \cdot \mathbb{E}[\mathsf{X}]\right)$$

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let X be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$. $\mathbb{E}[X] = \frac{4}{5} \cdot t$.

$$\Pr\left(\widehat{\mathsf{d}}\notin\left[(1-4\epsilon)d,(1+4\epsilon)d\right]\right)\leq\Pr\left(\mathsf{X}<\frac{5}{6}\cdot\mathbb{E}[\mathsf{X}]\right)\leq\Pr\left(|\mathsf{X}-\mathbb{E}[\mathsf{X}]|\geq\frac{1}{6}\mathbb{E}[\mathsf{X}]\right)$$

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let **X** be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$. $\mathbb{E}[\mathbf{X}] = \frac{4}{5} \cdot t$.

$$\Pr\left(\widehat{\mathbf{d}} \notin [(1-4\epsilon)d, (1+4\epsilon)d]\right) \leq \Pr\left(\mathbf{X} < \frac{5}{6} \cdot \mathbb{E}[\mathbf{X}]\right) \leq \Pr\left(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \geq \frac{1}{6}\mathbb{E}[\mathbf{X}]\right)$$

Apply Chernoff bound:

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let X be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$. $\mathbb{E}[X] = \frac{4}{5} \cdot t$.

$$\Pr\left(\widehat{\mathbf{d}}\notin [(1-4\epsilon)d,(1+4\epsilon)d]\right) \leq \Pr\left(\mathbf{X}<\frac{5}{6}\cdot\mathbb{E}[\mathbf{X}]\right) \\ \leq \Pr\left(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|\geq \frac{1}{6}\mathbb{E}[\mathbf{X}]\right)$$

Apply Chernoff bound:

$$\Pr\left(|X - \mathbb{E}[X]| \ge \frac{1}{6}\mathbb{E}[X]\right) \le 2\exp\left(-\frac{\frac{1}{6}^2 \cdot \frac{4}{5}t}{2 + 1/6}\right) = O\left(e^{-ct}\right).$$

- $\hat{\mathbf{d}}_1, \dots, \hat{\mathbf{d}}_t$ are the outcomes of the t trials, each falling in $[(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least 4/5.
- $\cdot \ \widehat{\mathbf{d}} = median(\widehat{\mathbf{d}}_1, \dots, \widehat{\mathbf{d}}_t).$

What is the probability that the median $\hat{\mathbf{d}}$ falls in $[(1-4\epsilon)d,(1+4\epsilon)d]$?

• Let X be the # of trials falling in $[(1 - 4\epsilon)d, (1 + 4\epsilon)d]$. $\mathbb{E}[X] = \frac{4}{5} \cdot t$.

$$\Pr\left(\widehat{\mathbf{d}}\notin [(1-4\epsilon)d,(1+4\epsilon)d]\right) \leq \Pr\left(\mathbf{X}<\frac{5}{6}\cdot\mathbb{E}[\mathbf{X}]\right) \\ \leq \Pr\left(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|\geq \frac{1}{6}\mathbb{E}[\mathbf{X}]\right)$$

Apply Chernoff bound:

$$\Pr\left(|\mathsf{X} - \mathbb{E}[\mathsf{X}]| \ge \frac{1}{6}\mathbb{E}[\mathsf{X}]\right) \le 2\exp\left(-\frac{\frac{1}{6}^2 \cdot \frac{4}{5}t}{2+1/6}\right) = O\left(e^{-ct}\right).$$

• Setting $t = O(\log(1/\delta))$ gives failure probability $e^{-\log(1/\delta)} = \delta$.

Upshot: The median of $t = O(\log(1/\delta))$ independent runs of the hashing algorithm for distinct elements returns $\widehat{\mathbf{d}} \in [(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least $1-\delta$.

Upshot: The median of $t = O(\log(1/\delta))$ independent runs of the hashing algorithm for distinct elements returns $\hat{\mathbf{d}} \in [(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least $1-\delta$.

Total Space Complexity: t trials, each using $k=\frac{1}{\epsilon^2\delta'}$ hash functions, for $\delta'=1/5$. Space is $\frac{5t}{\epsilon^2}=O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ real numbers (the minimum value of each hash function).

Upshot: The median of $t = O(\log(1/\delta))$ independent runs of the hashing algorithm for distinct elements returns $\widehat{\mathbf{d}} \in [(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least $1-\delta$.

Total Space Complexity: t trials, each using $k = \frac{1}{\epsilon^2 \delta'}$ hash functions, for $\delta' = 1/5$. Space is $\frac{5t}{\epsilon^2} = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ real numbers (the minimum value of each hash function).

No dependence on the number of distinct elements d or the number of items in the stream n! Both of these numbers are typically very large.

Upshot: The median of $t = O(\log(1/\delta))$ independent runs of the hashing algorithm for distinct elements returns $\widehat{\mathbf{d}} \in [(1-4\epsilon)d, (1+4\epsilon)d]$ with probability at least $1-\delta$.

Total Space Complexity: t trials, each using $k = \frac{1}{\epsilon^2 \delta'}$ hash functions, for $\delta' = 1/5$. Space is $\frac{5t}{\epsilon^2} = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ real numbers (the minimum value of each hash function).

No dependence on the number of distinct elements *d* or the number of items in the stream *n*! Both of these numbers are typically very large.

A note on the median: The median is often used as a robust alternative to the mean, when there are outliers (e.g., heavy tailed distributions, corrupted data).