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Last Class:
- Finish up Bloom Filters and optimization of number of hash
functions.
- Start on streaming algorithms.
- Introduce the frequent items problem and its applications.

- Start on the Count-Min sketch algorithm for frequent items.

This Class:

- Analysis of Count-Min sketch .

- Start on distinct items counting problem.



Approximate Frequent Elements

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xp. Return a set F of items, including all items that appear at
least ¢ times and only items that appear at least (1 —¢) - § times.

- To solve this problem, it suffices to estimate the frequency f(x)
of each item x up to error £

- Will discuss later how to maintain the list of top items in small
space.



Frequent Elements with Count-Min Sketch

Count-min sketch:
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random hash function h
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Count-min sketch:
Xy Xp Xz Xy e Xy

random hash function h

m length array A| 1 2 0 0 0 1 0 0 0 0




Frequent Elements with Count-Min Sketch

Count-min sketch:

random hash function h




Frequent Elements with Count-Min Sketch

Count-min sketch:

random hash function h

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, [{xj : X; = x}|.




Count-Min Sketch Accuracy

Xy Xp X3 Xg X

random hash function h

m length array A | 4

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).

- A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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Xy Xp X3 Xg X

random hash function h

m length array A | 4

Use A[h(x)] to estimate f(x).
Claim 1: We always have A[h(x)] > f(x).

- A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

AL = FO + 22y sy =ho FV)-

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

Alh()] = f(x) + Y. W)

y#h()=h(x)

error in frequency estimate

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6
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n
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What is a bound on probability that the error is > %?

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6
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Alh(X)] = f(x) + > Ay
y#h()=h(x)

—_———
Expected Error: error in frequency estimate

E { > f(y)] =Y Pr(h(y) = h(x)) - f(y)
y#xh(y)=h(x)

=3 ) = (-0 <

n
m m
What is a bound on probability that the error is > %?

Markov's inequality: Pr {Zy#h(y):h(x)f(y) > <5

What property of h is required to show this bound? a) fully random
b) pairwise independent ¢) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6




Count-Min Sketch Accuracy

X; Xp X3 X4 R

random hash function h

m length arrayAl 4 2 1 E. 1 3

Claim: For any x, with probability at least 1/2,

) < ALCO] < 09 + 2.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.
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X; Xp X3 X4 e X

random hash functior%

m length array A | 4 2 1

n

! 3

Claim: For any x, with probability at least 1/2,

) < ALCO] < 09 + 2.

To solve the (e, R)-Frequent elements problem, set m = 2

P

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

X; Xp X3 X4 e X

random hash functior%

m length array A | 4 2 1

n

! 3

Claim: For any x, with probability at least 1/2,

2n
) < AINGOT < F0) + .
To solve the (e, k)-Frequent elements problem, set m = 2. How

can we improve the success probability? ‘

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Accuracy

X; Xp X3 X4 R

random hash functior%

m length array A | 4 2 1

! 3

Claim: For any x, with probability at least 1/2,

) < ALCO] < 09 + 2.

To solve the (e, R)-Frequent elements problem, set m = 2. How

can we improve the success probability? Repetition. ‘

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.




Count-Min Sketch Repetition

t random hash functions
hy, hy ..., he

A, 0 0 0 0 0 0 0 0 0 0

tlength m arrays Az | 0




Count-Min Sketch Repetition

X4 Xo X3 Xy

{random hash functions
hy, hy,... by

A1100000‘0‘000

tlength m arrays Az | 0




Count-Min Sketch Repetition

X4 Xo X3 Xy

) t}aﬁdom hash functions
hy, hy ... hy

Arl2 ojCc|lo Q|00 0 0 O

tlength marrays A2 | 0 | 0




Count-Min Sketch Repetition

t random hash functions
hy, hy ..., he

A, 2 5 1 0 6 12. 1 3 4

tlengthmarrays A, | 1 | 6 | 1 |10 78 . 4 {113 5

At.l 52 6 | 3 |12 33.3 2




Count-Min Sketch Repetition

Xy Xp X3 Xg e Xq

t random hash functions

A2 s |1 4
tlengthmarrays A2 | 1 | 6 | 1 5
A, . 1 [ 52 2

Estimate f(x) with f(x) = minic( Ai[hi(x)]. (Count-min sketch)
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Xy Xp X3 X4 Xn
X
t random hash functions
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tlength m arrays Az \1 6 | 1 |10 4 11| 3 | 5

A, 1 6 | 3 |12 33.32

Estimate f(x) with f(x) = minic( Ai[hi(x)]. (Count-min sketch)
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Estimate f(x) with f(x) = minic( Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?




Count-Min Sketch Repetition

Xy Xp X3 X4 Xn
X
t random hash functions
A, \z 113 | 4
A |
tlength m arrays Az \1 6 | 1 |10 4 11| 3 | 5

A, 1 6 | 3 |12 33.32

Estimate f(x) with f(x) = minic( Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average? The minimum estimate is
always the most accurate since they are all overestimates of the true

frequency!



Count-Min Sketch Analysis

Xy Xp Xz X4 R S

t random hash functions
..., h,
2 | s M 6 |12 1 ‘ 3 ‘ 4 |

Ay

tlength m arrays Az

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]
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tlength m arrays Az
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Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability

>1/2: en

fx) < Ailhi ()] < f(x) + R
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Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability
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fx) < Ailhi ()] < f(x) + R

- What is Pr[f(x) < f(x) < f(x) + £]?



Count-Min Sketch Analysis

Ay

tlength m arrays Az

B EECECECT

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability
>1/2: en
fix) < Ailhi(x)] < f(x) + R

- What is Pr[f(x) < f(x) < f(x) + <2]? 1—1/2t.



Count-Min Sketch Analysis

Ay

tlength m arrays Az

B EECECECT

Estimate f(x) by f(x) = minjeqg Ai[hi(X)]

- For every x and i € [t], we know that for m = % with probability

>1/2: en

fx) < Ailhi ()] < f(x) + R

- What is Pr[f(x) < f(x) < f(x) + <2]? 1—1/2t.
- To get a good estimate with probability > 1— 4, set t = log,(1/4).



Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ¢! with probability > 1—4din
O (log(1/0) - R/€) space.

10
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problem - distinquish between items with frequency 7
and those with frequency (1 —€)7.
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Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ¢! with probability > 1—4din
O (log(1/0) - R/€) space.

- Accurate enough to solve the (e, R)-Frequent elements
problem - distinquish between items with frequency 7
and those with frequency (1 —€)7.

- How should we set ¢ if we want a good estimate for all
items at once, with 99% probability?

10



Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

n



Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

- When a new item comes in at step i/, check if its estimated
frequency is > i/k and store it if so.

- At step i remove any stored items whose estimated
frequency drops below i/k.

- Store at most O(R) items at once and have all items with
frequency > n/k stored at the end of the stream.

n



Questions on Frequent Items?

12



Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements in the stream.

Eg,
1,5,7,5,2,1 — 4 distinct elements

13
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1,5,7,5,2,1 — 4 distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.

- Distinct values in a database column (for estimating sizes of
joins and group bys).

- Number of distinct search engine queries.

- Counting distinct motifs in large DNA sequences.
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Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements in the stream.

Eg,
1,5,7,5,2,1 — 4 distinct elements

Applications:

- Distinct IP addresses clicking on an ad or visiting a site.

- Distinct values in a database column (for estimating sizes of
joins and group bys).

- Number of distinct search engine queries.

- Counting distinct motifs in large DNA sequences.
Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

13



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
X1,...,Xp, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):
- Leth: U — [0,1] be a random hash function (with a real valued
output)
cS:=1
- Fori=1,...,n
-+ s :=min(s, h(x))
- Returnd =1 -1

5
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- Fori=1,...,n
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Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

- Leth: U — [0,1] be a random hash function (with a real valued output)
- Ss:i=1
- Fori=1,...,n
- s :=min(s, h(x))
- Returnd =1 —1
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Min-Hashing for Distinct Elements:
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- After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.
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- After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

- Intuition: The larger d is, the smaller we expect s to be.
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Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

- Leth: U — [0,1] be a random hash function (with a real valued output)
- Ss:i=1
- Fori=1,...,n
- s :=min(s, h(x))
- Returnd =1 —1

S
+— —e— —o—+
0 h(xs) h(x,) h(x) hixg) 1
h(x,)

- After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

- Intuition: The larger d is, the smaller we expect s to be.

- Same idea as Flajolet-Martin algorithm and HyperLoglog, except
they use discrete hash functions. 15



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.
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Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

S
—eo—o —o—0—+
0 h(xs) h(x;) h(x) hix;) 1
h(x,)

1
d+1

E[s] = (using E(s) = /OO Pr(s > x)dx) + calculus)
0

- So our estimate d = 1 —Tis correct if s exactly equals its

expectation. Does this mean ]E[a] = d? No, but:
- Approximation is robust: if |s — E[s]| < ¢- E[s] for any
e € (0,1/2) and a small constant ¢ < 4

(1—ce)d <d < (1+ce)d



Initial Concentration Bound

So question is how well s concentrates around its mean.

1

Bl =5

s: minimum of d diAstinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d = % — 1: estimate of # distinct elements d.
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Initial Concentration Bound

So question is how well s concentrates around its mean.
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- Lethy,hy, ... hy - U—[0,1] be random hash functions
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Space Complexity

Hashing for Distinct Elements:

- Lethy, hy,... hy,: U—[0,1] be random hash functions

©S$1,S2,...,5:=1
- Fori=1,...,n

- For j:1,..., k, S = r‘l’]il’](Sj7 h}(X,))
T Si= %Zfﬁ Sj

- Returnd = 1 — 1

S
$, S, S,

—_—— = -+
0 1

+ Setting k = L5, algorithm returns d with |d — a| < 4e - d with
probability at least 1 — 4.
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Hashing for Distinct Elements:

- Lethy, hy,... hy,: U—[0,1] be random hash functions

©S$1,S2,...,5:=1
- Fori=1,...,n

- For j:1,..., k, S = r‘l’]il’](Sj7 h}(X,))
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+ Setting k = L5, algorithm returns d with |d — a| < 4e - d with
probability at least 1 — 4.

) G
Space complexity is k = - real numbers sy, ..., Sk.

- 0 = 5% failure rate gives a factor 20 overhead in space

complexity. 20
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The Median Trick

. 81, . ,at are the outcomes of the t trials, each falling in
[(1— 4e)d, (1 + 4e)d] with probability at least 4/5.

s d = median(ah . ,at).

What is the probability that the median d falls in
[(1—4e)d, (1 + 4e)d]?
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EX] =zt
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Apply Chernoff bound:

1 12, At
_ > < __6 5 _ —ct )
Pr (|X E[X]| > 6E[X]) _2exp< 2+1/6> 0 (e )
- Setting t = O(log(1/6)) gives failure probability e~ '08(1/%) = 4.
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Median Trick

Upshot: The median of t = O(log(1/9)) independent runs of
the hashing algorithm for distinct elements returns
d € [(1— 4e)d, (14 4e)d] with probability at least 1 — 4.
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Upshot: The median of t = O(log(1/9)) independent runs of
the hashing algorithm for distinct elements returns

d € [(1— 4e)d, (14 4e)d] with probability at least 1 — 4.

Total Space Complexity: t trials, each using k = 6215/ hash
functions, for & = 1/5. Space is % =0 (M) real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g,, heavy
tailed distributions, corrupted data).
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