
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 8

1



Summary

Last Class:

• Finish up Bloom Filters and optimization of number of hash
functions.

• Start on streaming algorithms.

• Introduce the frequent items problem and its applications.

• Start on the Count-Min sketch algorithm for frequent items.

This Class:

• Analysis of Count-Min sketch .

• Start on distinct items counting problem.

2



Approximate Frequent Elements

(ϵ, k)-Frequent Items Problem: Consider a stream of n items
x1, . . . , xn. Return a set F of items, including all items that appear at
least n

k times and only items that appear at least (1− ϵ) · n
k times.

• To solve this problem, it suffices to estimate the frequency f(x)
of each item x up to error ± ϵn

k .

• Will discuss later how to maintain the list of top items in small
space.

3



Frequent Elements with Count-Min Sketch

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

4



Frequent Elements with Count-Min Sketch

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

4



Frequent Elements with Count-Min Sketch

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

4



Frequent Elements with Count-Min Sketch

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

4



Frequent Elements with Count-Min Sketch

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

4



Frequent Elements with Count-Min Sketch

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

4



Frequent Elements with Count-Min Sketch

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

4



Frequent Elements with Count-Min Sketch

Count-min sketch:

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

4



Count-Min Sketch Accuracy

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] ≥ f(x).

• A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

• A[h(x)] = f(x) +
∑

y̸=x:h(y)=h(x) f(y).

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

5



Count-Min Sketch Accuracy

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] ≥ f(x).

• A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

• A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x) f(y).

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

5



Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =

∑
y̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y)

=
1
m · (n− f(x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6



Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =

∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y)

=
1
m · (n− f(x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6



Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y)

=
1
m · (n− f(x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6



Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y)

=
1
m · (n− f(x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6



Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y) = 1

m · (n− f(x)) ≤ n
m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6



Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y) = 1

m · (n− f(x)) ≤ n
m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6



Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y) = 1

m · (n− f(x)) ≤ n
m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6



Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y) = 1

m · (n− f(x)) ≤ n
m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 6



Count-Min Sketch Accuracy

Claim: For any x, with probability at least 1/2,

f(x) ≤ A[h(x)] ≤ f(x) + 2n
m .

To solve the (ϵ, k)-Frequent elements problem, set m = 2k
ϵ . How

can we improve the success probability?

Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

7



Count-Min Sketch Accuracy

Claim: For any x, with probability at least 1/2,

f(x) ≤ A[h(x)] ≤ f(x) + 2n
m .

To solve the (ϵ, k)-Frequent elements problem, set m = 2k
ϵ .

How
can we improve the success probability?

Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

7



Count-Min Sketch Accuracy

Claim: For any x, with probability at least 1/2,

f(x) ≤ A[h(x)] ≤ f(x) + 2n
m .

To solve the (ϵ, k)-Frequent elements problem, set m = 2k
ϵ . How

can we improve the success probability?

Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

7



Count-Min Sketch Accuracy

Claim: For any x, with probability at least 1/2,

f(x) ≤ A[h(x)] ≤ f(x) + 2n
m .

To solve the (ϵ, k)-Frequent elements problem, set m = 2k
ϵ . How

can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

7



Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?

The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

8



Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?

The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

8



Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?

The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

8



Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?

The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

8



Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?

The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

8



Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?

The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

8



Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average?

The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

8



Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (Count-min sketch)

Why min instead of taking the average? The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

8



Count-Min Sketch Analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]

• For every x and i ∈ [t], we know that for m = 2k
ϵ , with probability

≥ 1/2:
f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn

k .

• What is Pr[f(x) ≤ f̃(x) ≤ f(x) + ϵn
k ]?

1− 1/2t.

• To get a good estimate with probability ≥ 1− δ, set t = log2(1/δ).

9



Count-Min Sketch Analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]

• For every x and i ∈ [t], we know that for m = 2k
ϵ , with probability

≥ 1/2:
f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn

k .

• What is Pr[f(x) ≤ f̃(x) ≤ f(x) + ϵn
k ]?

1− 1/2t.

• To get a good estimate with probability ≥ 1− δ, set t = log2(1/δ).

9



Count-Min Sketch Analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]

• For every x and i ∈ [t], we know that for m = 2k
ϵ , with probability

≥ 1/2:
f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn

k .

• What is Pr[f(x) ≤ f̃(x) ≤ f(x) + ϵn
k ]?

1− 1/2t.

• To get a good estimate with probability ≥ 1− δ, set t = log2(1/δ).

9



Count-Min Sketch Analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]

• For every x and i ∈ [t], we know that for m = 2k
ϵ , with probability

≥ 1/2:
f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn

k .

• What is Pr[f(x) ≤ f̃(x) ≤ f(x) + ϵn
k ]? 1− 1/2t.

• To get a good estimate with probability ≥ 1− δ, set t = log2(1/δ).

9



Count-Min Sketch Analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]

• For every x and i ∈ [t], we know that for m = 2k
ϵ , with probability

≥ 1/2:
f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn

k .

• What is Pr[f(x) ≤ f̃(x) ≤ f(x) + ϵn
k ]? 1− 1/2t.

• To get a good estimate with probability ≥ 1− δ, set t = log2(1/δ). 9



Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ϵn

k with probability ≥ 1− δ in
O (log(1/δ) · k/ϵ) space.

• Accurate enough to solve the (ϵ, k)-Frequent elements
problem – distinquish between items with frequency n

k
and those with frequency (1− ϵ)nk .

• How should we set δ if we want a good estimate for all
items at once, with 99% probability?

10



Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ϵn

k with probability ≥ 1− δ in
O (log(1/δ) · k/ϵ) space.

• Accurate enough to solve the (ϵ, k)-Frequent elements
problem – distinquish between items with frequency n

k
and those with frequency (1− ϵ)nk .

• How should we set δ if we want a good estimate for all
items at once, with 99% probability?

10



Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
each item in a stream up to error ϵn

k with probability ≥ 1− δ in
O (log(1/δ) · k/ϵ) space.

• Accurate enough to solve the (ϵ, k)-Frequent elements
problem – distinquish between items with frequency n

k
and those with frequency (1− ϵ)nk .

• How should we set δ if we want a good estimate for all
items at once, with 99% probability?

10



Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

• When a new item comes in at step i, check if its estimated
frequency is ≥ i/k and store it if so.

• At step i remove any stored items whose estimated
frequency drops below i/k.

• Store at most O(k) items at once and have all items with
frequency ≥ n/k stored at the end of the stream.

11



Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

• When a new item comes in at step i, check if its estimated
frequency is ≥ i/k and store it if so.

• At step i remove any stored items whose estimated
frequency drops below i/k.

• Store at most O(k) items at once and have all items with
frequency ≥ n/k stored at the end of the stream.

11



Questions on Frequent Items?

12



Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements in the stream.
E.g.,

1, 5, 7, 5, 2, 1 → 4 distinct elements

Applications:

• Distinct IP addresses clicking on an ad or visiting a site.

• Distinct values in a database column (for estimating sizes of
joins and group bys).

• Number of distinct search engine queries.

• Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

13



Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements in the stream.
E.g.,

1, 5, 7, 5, 2, 1 → 4 distinct elements

Applications:

• Distinct IP addresses clicking on an ad or visiting a site.

• Distinct values in a database column (for estimating sizes of
joins and group bys).

• Number of distinct search engine queries.

• Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

13



Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements in the stream.
E.g.,

1, 5, 7, 5, 2, 1 → 4 distinct elements

Applications:

• Distinct IP addresses clicking on an ad or visiting a site.

• Distinct values in a database column (for estimating sizes of
joins and group bys).

• Number of distinct search engine queries.

• Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

13



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

14



Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1
• For i = 1, . . . ,n

• s := min(s,h(xi))
• Return d̃ = 1

s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions.

15



Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1
• For i = 1, . . . ,n

• s := min(s,h(xi))
• Return d̃ = 1

s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions.

15



Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1
• For i = 1, . . . ,n

• s := min(s,h(xi))
• Return d̃ = 1

s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions.

15



Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1
• For i = 1, . . . ,n

• s := min(s,h(xi))
• Return d̃ = 1

s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions. 15



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1 (using E(s) =

∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation.

Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ϵ · E[s] for any
ϵ ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cϵ)d ≤ d̂ ≤ (1+ cϵ)d

.

16



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] =

1
d+ 1 (using E(s) =

∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation.

Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ϵ · E[s] for any
ϵ ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cϵ)d ≤ d̂ ≤ (1+ cϵ)d

.

16



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1 (using E(s) =

∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation.

Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ϵ · E[s] for any
ϵ ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cϵ)d ≤ d̂ ≤ (1+ cϵ)d

.

16



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1 (using E(s) =

∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation.

Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ϵ · E[s] for any
ϵ ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cϵ)d ≤ d̂ ≤ (1+ cϵ)d

.

16



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1 (using E(s) =

∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation. Does this mean E[d̂] = d?

No, but:

• Approximation is robust: if |s− E[s]| ≤ ϵ · E[s] for any
ϵ ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cϵ)d ≤ d̂ ≤ (1+ cϵ)d

.

16



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1 (using E(s) =

∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation. Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ϵ · E[s] for any
ϵ ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cϵ)d ≤ d̂ ≤ (1+ cϵ)d

.

16



Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1 (using E(s) =

∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation. Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ϵ · E[s] for any
ϵ ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cϵ)d ≤ d̂ ≤ (1+ cϵ)d

.
16



Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1

and Var[s] ≤ 1
(d+ 1)2 (also via calculus)

.

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

1
ϵ2

.

Bound is vacuous for any ϵ < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

17



Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1 and Var[s] ≤ 1

(d+ 1)2 (also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

1
ϵ2

.

Bound is vacuous for any ϵ < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

17



Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1 and Var[s] ≤ 1

(d+ 1)2 (also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2

=
1
ϵ2

.

Bound is vacuous for any ϵ < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

17



Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1 and Var[s] ≤ 1

(d+ 1)2 (also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

1
ϵ2
.

Bound is vacuous for any ϵ < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

17



Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1 and Var[s] ≤ 1

(d+ 1)2 (also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

1
ϵ2
.

Bound is vacuous for any ϵ < 1.

How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

17



Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1 and Var[s] ≤ 1

(d+ 1)2 (also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

1
ϵ2
.

Bound is vacuous for any ϵ < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

17



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h : U → [0, 1] be a random hash function

• s := 1

• For i = 1, . . . ,n

• s := min(s,h(xi))

• Return d̂ = 1
s − 1

18



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h : U → [0, 1] be a random hash function

• s := 1

• For i = 1, . . . ,n

• s := min(s,h(xi))

• Return d̂ = 1
s − 1

18



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s := 1

• For i = 1, . . . ,n

• s := min(s,h(xi))

• Return d̂ = 1
s − 1

18



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n

• s := min(s,h(xi))

• Return d̂ = 1
s − 1

18



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n

• For j=1,…,k, sj := min(sj,hj(xi))

• Return d̂ = 1
s − 1

18



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• For j=1,…,k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj
• Return d̂ = 1

s − 1

18



Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• For j=1,…,k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj
• Return d̂ = 1

s − 1

18



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1

=⇒ E[s]

=
1

d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2

=⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2 =

ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s]

=
1

d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2

=⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2 =

ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2

=⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2 =

ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2 =⇒ Var[s]

≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2 =

ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2 =⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2 =

ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2 =⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2

=
E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2 =

ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2 =⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2

=
ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2 =⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2

=
ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?

k = 1
ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2 =⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2

=
ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1 =⇒ E[s] = 1
d+ 1 (linearity of expectation)

Var[sj] ≤
1

(d+ 1)2 =⇒ Var[s] ≤ 1
k · (d+ 1)2 (linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ ϵE[s]] ≤ Var[s]
(ϵE[s])2 =

E[s]2/k
ϵ2E[s]2 =

1
k · ϵ2 =

ϵ2 · δ
ϵ2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ϵ2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

19



Space Complexity

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions
• s1, s2, . . . , sk := 1
• For i = 1, . . . ,n

• For j=1,…, k, sj := min(sj,hj(xi))
• s := 1

k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ϵ2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ϵ · d with

probability at least 1− δ.

• Space complexity is k = 1
ϵ2·δ real numbers s1, . . . , sk.

• δ = 5% failure rate gives a factor 20 overhead in space
complexity.

20



Space Complexity

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions
• s1, s2, . . . , sk := 1
• For i = 1, . . . ,n

• For j=1,…, k, sj := min(sj,hj(xi))
• s := 1

k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ϵ2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ϵ · d with

probability at least 1− δ.

• Space complexity is k = 1
ϵ2·δ real numbers s1, . . . , sk.

• δ = 5% failure rate gives a factor 20 overhead in space
complexity.

20



Space Complexity

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions
• s1, s2, . . . , sk := 1
• For i = 1, . . . ,n

• For j=1,…, k, sj := min(sj,hj(xi))
• s := 1

k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ϵ2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ϵ · d with

probability at least 1− δ.

• Space complexity is k = 1
ϵ2·δ real numbers s1, . . . , sk.

• δ = 5% failure rate gives a factor 20 overhead in space
complexity. 20



Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

21



Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

21



Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

21



Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

21



Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

21



Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the median
will.

• Have < 1/2 of trials on both the left and right.
21



Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 2/3 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the median
will.

• Have < 1/3 of trials on both the left and right.
21



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].

E[X] = 4
5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

2
3 · t

)

≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].

E[X] = 4
5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

2
3 · t

)

≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].

E[X] = 4
5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

2
3 · t

)

≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].
E[X] =

4
5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

2
3 · t

)

≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

2
3 · t

)

≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

5
6 · E[X]

)

≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

5
6 · E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

5
6 · E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

5
6 · E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

22



The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

5
6 · E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ. 22



Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ϵ2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ϵ2
= O

(
log(1/δ)

ϵ2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

23



Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ϵ2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ϵ2
= O

(
log(1/δ)

ϵ2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

23



Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ϵ2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ϵ2
= O

(
log(1/δ)

ϵ2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

23



Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ϵ2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ϵ2
= O

(
log(1/δ)

ϵ2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

23


