
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 7

1

Summary

Last Class:

• Finish up exponential concentration bounds. Application to max
load in hashing/load balancing.

• Bloom filters for storing a set with a small false positive rate.

• Start on Bloom filter analysis.

This Class:

• Finish Bloom filters.

• Start on streaming algorithms

• Frequent items estimation via Count-Min sketch

2

Quiz

• Average time spent on homework: approx. 20 hours. If you
spent way more than this and would like to chat, send me a
message.

• 13 people worked alone, 149 worked in groups. Mix of
approaches to splitting up work in groups.

• A fair number of people reported just splitting up the problems
– I strongly recommend not doing this.

3

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.
4

Bloom Filter Quiz Question

5

Analysis

Step 1: What is the probability that after inserting n elements, the ith
bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn
≈ e− kn

m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)
= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate.

6

Optimizing Parameters

False Positive Rate: with m bits of storage, k hash functions, and n
items inserted δ ≈

(
1− e−kn

m

)k
. How should we set k to minimize the

FPR given a fixed amount of space m?

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

• Can differentiate to show optimal number of hashes is
k = ln 2 · m

n .

• Balances filling up the array vs. having enough hashes so that
even when the array is pretty full, a new item is unlikely to yield
a false positive. 7

False Positive Rate
False Positive Rate: with m bits of storage, k hash functions, and n
items inserted δ ≈

(
1− e−kn

m

)k
.

• Say we have 100 million users, each who have rated 10 movies.

• n = 109 = n (user,movie) pairs with non-empty ratings.

• Allocate m = 8n = 8× 109 bits for a Bloom filter (1 GB).

• Set k = ln 2 · m
n = 5.54 ≈ 6.

• False positive rate is ≈
(
1− e−k· n

m
)k ≈ 1

2k ≈ 1
25.54 = .021.

8

Bloom Filter Note

An observation about Bloom filter space complexity:

False Positive Rate: δ ≈
(
1− e− kn

m

)k
.

For an m-bit bloom filter holding n items, optimal number of hash
functions k is: k = ln 2 · m

n .

Think Pair Share: If we want a false positive rate < 1
2 how big does m

need to be in comparison to n?

m = O(log n), m = O(
√
n), m = O(n), m = O(n2)?

If m = n
ln 2 , optimal k = 1, and failure rate is:

δ =
(
1− e−

n/ ln 2
n

)1
=

(
1− 1

2

)1
=

1
2 .

I.e., storing n items in a bloom filter requires O(n) space. So what’s
the point? Truly O(n) bits, rather than O(n · item size).

9

Questions on Bloom Filters?

10

Streaming Algorithms

Stream Processing: Have a massive dataset X with n items
x1, x2, . . . , xn that arrive in a continuous stream. Not nearly
enough space to store all the items (in a single location).

• Still want to analyze and learn from this data.
• Typically must compress the data on the fly, storing a data
structure from which you can still learn useful information.

• Often the compression is randomized. E.g., bloom filters.
• Compared to traditional algorithm design, which focuses
on minimizing runtime, the big question here is how much
space is needed to answer queries of interest.

11

Some Examples

• Sensor data: images from telescopes (30 terabytes per night
from the Vera C. Rubin Observatory), readings from seismometer
arrays monitoring and predicting earthquake activity, traffic
cameras and travel time sensors (Smart Cities), electrical grid
monitoring.

• Internet Traffic: 8.5 billion Google searches, billions of ad-clicks
and other logs from instrumented webpages, IPs routed by
network switches, ...

• Datasets in Machine Learning: When training e.g. a neural
network on a large dataset (ImageNet with 14 million images or
LLaMA-2 on trillions of tokens of text), the data is typically
processed in a stream due to storage limitations.

12

The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x1, . . . , xn (with possible duplicates). Return any item
at appears at least n

k times.

• What is the maximum number of items that can be
returned? a) n b) k c) n/k d) log n

• Trivial with O(n) space – store the count for each item and
return the one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n
items?

13

The Frequent Items Problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. I.e., want to maintain a running list of
frequent items that appear in a stream.

14

Frequent Itemset Mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

• Identified via frequent itemset counting. Find all sets of t items
that appear many times in the same basket.

• Frequency of an itemset is known as its support.

• A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g., baskets
are Twitter users and itemsets are subsets of who they follow.

15

Approximate Frequent Elements

Issue: No algorithm using o(n) space can output just the items with
frequency ≥ n/k. Hard to tell between an item with frequency n/k
(should be output) and n/k− 1 (should not be output).

(ϵ, k)-Frequent Items Problem: Consider a stream of n items
x1, . . . , xn. Return a set F of items, including all items that appear at
least n

k times and only items that appear at least (1− ϵ) · n
k times.

• An example of relaxing to a ‘promise problem’: for items with
frequencies in [(1− ϵ) · n

k ,
n
k] no output guarantee.

16

Frequent Elements with Count-Min Sketch

Today: Count-min sketch – a random hashing based method
closely related to bloom filters.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

17

Count-Min Sketch Accuracy

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] ≥ f(x). Why?

• A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

• A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x) f(y).

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

18

