COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 6

- Problem Set 1is due tomorrow at 11:59pm in Gradescope.

- Remember to make one submission per group, but all
group members must be enrolled in Gradescope and have
their names added to the submission.

- Submit 4 of the 5 questions and just submit nothing for
the challenge problem that you didn’t complete.

- Quiz 3 is due Monday at 8pm.

Last Class:

- Higher moment bounds and exponential concentration bounds
- Bernstein inequality and the Chernoff bound

- Connection to the central limit theorem.
This Class:

- Finish example application of exponential concentration
bounds.

- Bloom filters: random hashing to maintain a large set in small
space.

Application to Random Hashing

128-bit IP addresses Hash Table

=1
8 202) * ;
N
172.16.254.1 o N 3
\ o 4
192.168.1.34 A .
16.58.26.164 h(16582616,)= 1590
L

We hash m values xi, ..., Xy, using a random hash function into
a table with n = m entries.

- lLe, forallj € [m] and i € [m], Pr(h(x;) = i) = & and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?

Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

ES] = E[S]=m- % _

=

By the Chernoff Bound: for any § > 0,

n 62
ZS,-7)-71 >0-pu| <2exp <2+5>

i=1
m: total number of items hashed and size of hash table. x, ..., Xxm: the items.
h: random hash function mapping xi, . . ., Xm — [m].

Pr(S,21+6)§Pr<

Maximum Load in Randomized Hashing
n 62
ZS,-J71 >5><2exp(2+6).

i=1
(5log m)?
2+ 5logm

Pr($;>1+5)<Pr<

Set 6 = 5logm. Gives:

Pr(S; > 5logm +1) < 2exp (— > < 2exp(—3logm) <

2
ﬁ.
Apply Union Bound:

m
Pr(maxS; > 5logm +1) = Pr (U(Si > Slogm + 1))

ie[m)
[m] i
m

2
§ZPr(S,~25logm+1)§m-73:72,
= me

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S;;: indicator if x; is hashed to bucket i. §: any value > 0.

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is O(log m).

- Using ChebysheV's inequality could only show the
maximum load is bounded by O(yv/m) with good
probability (good exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m).

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability 6 > 0 of false positives. l.e, for any
X,

Pr(query(x) =1and x ¢ S) <.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = Alhx(X)] :==1.
- query(x): return Tonly if A[hi(x)] = ... = Alhx(X)] = 1.

Insertions

m bitarray Al 0 | 0 | O 0 0|0 0 0| o0 0 | mbitarray A] 0 0o 0

Queries:

No false negatives. False positives more likely with more insertions. 9

Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ — pages
only visited once fill over 75% of cache.

g o0
§ 12000
8

$ 10000

£ 2000 <¢— Bloom filter —ypp

B 0 turned on
17-Feb 27-feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

- When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

- False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of § = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

10

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1 2

- When a new rating is inserted for (usery, movie,), add
(usery, moviey) to a bloom filter.

- Before reading (usery, movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

- False positive: A read is made to a possibly empty cell. A § = .05

false positive rate gives a 95% reduction in these empty reads. ”

More Applications

- Database Joins: Quickly eliminate most keys in one column that
don't correspond to keys in another.

- Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

- Spam/Fraud Detection:

- Bit.ly and Google Chrome use bloom filters to quickly check
if a url maps to a flagged site and prevent a user from
following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

- Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).
12

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(R). How does the false positive rate 6 depend on m,
kR, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0? n x k total hashes must not hit bit /.

Pr(A[l] = 0) = Pr (hi(xa) # i N... N he(xp) # i
M) £i...Nhe(x) £in...)
= Pr(ha(x:) # i) x ... x Pr (he(x1) # i) x Pr (ha(x2) # 1) ..

k-n events each occuring with probability 1—1/m

(-3

13

How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the it"
bit of the array A is still 0?

Pr(A[l] = 0) = <1 _ 1)“ g

m

Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... = Alhp(w)] =1)
= Pr(A[hy(w)] = 1) x ... x Pr(A[hg(w)] = 1)

N
= (1 — e*%> Actually Incorrect! Dependent events.

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, 4: false positive rate. 1%

Correct Analysis Sketch

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(Alh(w)] = ... = Alhg(wW)] = 1)
Pr(A[h:(w)] = 1) x ... x Pr(A[hx(w)] = 1).

l.e, the events Alhy(w)] = 1,..., A[hg(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h; is a fully random
hash function, Pr(A[hj(w)] =1) =1—- L.

- Thus conditioned on this event, the false positive rate is
(1-5)"

- It remains to show that % ~ e~ with high probability. We

already have that E[£] = 1 S Pr(A[i] = 0) ~ e~ 7.
15

Correct Analysis Sketch

Need to show that the number of zeros t in A after n insertions
is bounded by O (e‘%n> with high probability.

Can apply Theorem 2 of:
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

