
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2024.
Lecture 6

1

Logistics

• Problem Set 1 is due tomorrow at 11:59pm in Gradescope.
• Remember to make one submission per group, but all
group members must be enrolled in Gradescope and have
their names added to the submission.

• Submit 4 of the 5 questions and just submit nothing for
the challenge problem that you didn’t complete.

• Quiz 3 is due Monday at 8pm.

2

-

Last Time

Last Class:

• Higher moment bounds and exponential concentration bounds

• Bernstein inequality and the Chernoff bound

• Connection to the central limit theorem.

This Class:

• Finish example application of exponential concentration
bounds.

• Bloom filters: random hashing to maintain a large set in small
space.

3

d

Application to Random Hashing

We hash m values x1, . . . , xm using a random hash function into
a table with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [m], Pr(h(xj) = i) = 1
m and hash

values are chosen independently.

What will be the maximum number of items hashed into the
same location?

4

D

Application to Random Hashing

We hash m values x1, . . . , xm using a random hash function into
a table with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [m], Pr(h(xj) = i) = 1
m and hash

values are chosen independently.

What will be the maximum number of items hashed into the
same location?

4

-

Application to Random Hashing

We hash m values x1, . . . , xm using a random hash function into
a table with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [m], Pr(h(xj) = i) = 1
m and hash

values are chosen independently.

What will be the maximum number of items hashed into the
same location?

4

- a n .

Maximum Load in Randomized Hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑

j=1

E[Si,j] = m · 1
m

= 1

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ · µ
)

≤ 2 exp
(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].

5

-

- -

Maximum Load in Randomized Hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑

j=1

E[Si,j] = m · 1
m

= 1

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ · µ
)

≤ 2 exp
(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].

5

Piging?.
s?D O

K¥111,aw¥

Maximum Load in Randomized Hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑

j=1

E[Si,j] = m · 1
m

= 1

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ · µ
)

≤ 2 exp
(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].

5

ms#Gi] su:#Csi]

f-S i Si-#Gil !

-

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 5 logm. Gives:

Pr(Si ≥ 5 logm+ 1) ≤ 2 exp
(
− (5 logm)2

2+ 5 logm

)

≤ 2 exp(−3 logm) ≤ 2
m3

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 5 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 5 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 5 logm+ 1) ≤ m · 2
m3 =

2
m2

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

6

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 5 logm. Gives:

Pr(Si ≥ 5 logm+ 1) ≤ 2 exp
(
− (5 logm)2

2+ 5 logm

)

≤ 2 exp(−3 logm) ≤ 2
m3

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 5 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 5 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 5 logm+ 1) ≤ m · 2
m3 =

2
m2

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

6

a

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 5 logm. Gives:

Pr(Si ≥ 5 logm+ 1) ≤ 2 exp
(
− (5 logm)2

2+ 5 logm

)

≤ 2 exp(−3 logm) ≤ 2
m3

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 5 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 5 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 5 logm+ 1) ≤ m · 2
m3 =

2
m2

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

6

⇒
-

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 5 logm. Gives:

Pr(Si ≥ 5 logm+ 1) ≤ 2 exp
(
− (5 logm)2

2+ 5 logm

)
≤ 2 exp(−3 logm) ≤ 2

m3 .

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 5 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 5 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 5 logm+ 1) ≤ m · 2
m3 =

2
m2

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

6

-

254pm)? 25kgmf
From § 23$

(stringm ?
l 521g(n)

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 5 logm. Gives:

Pr(Si ≥ 5 logm+ 1) ≤ 2 exp
(
− (5 logm)2

2+ 5 logm

)
≤ 2 exp(−3 logm) ≤ 2

m3 .

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 5 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 5 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 5 logm+ 1) ≤ m · 2
m3 =

2
m2

.

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

6

-
-

Maximum Load in Randomized Hashing

Pr(Si ≥ 1+ δ) ≤ Pr

(∣∣∣∣∣

n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 5 logm. Gives:

Pr(Si ≥ 5 logm+ 1) ≤ 2 exp
(
− (5 logm)2

2+ 5 logm

)
≤ 2 exp(−3 logm) ≤ 2

m3 .

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 5 logm+ 1) = Pr

(m⋃

i=1

(Si ≥ 5 logm+ 1)
)

≤
m∑

i=1

Pr(Si ≥ 5 logm+ 1) ≤ m · 2
m3 =

2
m2 .

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.

6

D O
0

odor)

- f ¥

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).
• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).

7

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).
• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).

7

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).

• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).

7

[$

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in
each bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the
maximum load is bounded by O(

√
m) with good

probability (good exercise).
• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).

7

"Elly" hlx) :i up. Hm
✓when'' a n d hlxthly),hH),....axilprt

pickrudm
seedsa ,b
4×1:a x i sm o d n

[
hixlhh-yl.LK)

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

8

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time.

What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

8

↳ h e r table

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

8

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

8

J :O .0 5

prlywyxt.tl/xelslxts)

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

• Allow small probability δ > 0 of false positives. I.e., for any
x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

8

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

→

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

µ

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

9

Bloom Filters

Chose k independent random hash functions h1, . . . ,hk mapping the
universe of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.
9

-

site array m ,K
⇒ Aiders i n S
a n d J

W

Applications: Caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

10

Applications: Caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

10

Applications: Caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

10

-

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads.

11

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads.

11

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads.

11

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads. 11

More Applications

• Database Joins: Quickly eliminate most keys in one column that
don’t correspond to keys in another.

• Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

• Spam/Fraud Detection:
• Bit.ly and Google Chrome use bloom filters to quickly check
if a url maps to a flagged site and prevent a user from
following it.

• Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

• Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).

12

[

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k).

How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) (= i ∩ . . . ∩ hk(xk) (= i

∩ h1(x2) (= i . . . ∩ hk(x2) (= i ∩ . . .
)

= Pr
(
h1(x1) (= i)× . . .× Pr

(
hk(x1) (= i)× Pr

(
h1(x2) (= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

13

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) (= i ∩ . . . ∩ hk(xk) (= i

∩ h1(x2) (= i . . . ∩ hk(x2) (= i ∩ . . .
)

= Pr
(
h1(x1) (= i)× . . .× Pr

(
hk(x1) (= i)× Pr

(
h1(x2) (= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

13

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) (= i ∩ . . . ∩ hk(xk) (= i

∩ h1(x2) (= i . . . ∩ hk(x2) (= i ∩ . . .
)

= Pr
(
h1(x1) (= i)× . . .× Pr

(
hk(x1) (= i)× Pr

(
h1(x2) (= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

13

I f

Fei Yi",] " I . i n : 4 : 'positions 4 I

¥ (I-IT

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) (= i ∩ . . . ∩ hk(xk) (= i

∩ h1(x2) (= i . . . ∩ hk(x2) (= i ∩ . . .
)

= Pr
(
h1(x1) (= i)× . . .× Pr

(
hk(x1) (= i)× Pr

(
h1(x2) (= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

13

r

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) (= i ∩ . . . ∩ hk(xk) (= i

∩ h1(x2) (= i . . . ∩ hk(x2) (= i ∩ . . .
)

= Pr
(
h1(x1) (= i)× . . .× Pr

(
hk(x1) (= i)× Pr

(
h1(x2) (= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

13

Analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) (= i ∩ . . . ∩ hk(xk) (= i

∩ h1(x2) (= i . . . ∩ hk(x2) (= i ∩ . . .
)

= Pr
(
h1(x1) (= i)× . . .× Pr

(
hk(x1) (= i)× Pr

(
h1(x2) (= i) . . .

︸ ︷︷ ︸
k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

13

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 14

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 14

l i k e

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 14

(l-e"?)"

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 14

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k

Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 14

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect!

Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 14

Analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith

bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn

≈ e− kn
m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 14

✓

[x d

Correct Analysis Sketch

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t ≤ m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(A[h1(w)] = . . . = A[hk(w)] = 1)
= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1).

I.e., the events A[h1(w)] = 1,…, A[hk(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

• Conditioned on this event, for any j, since hj is a fully random
hash function, Pr(A[hj(w)] = 1) = 1− t

m .

• Thus conditioned on this event, the false positive rate is(
1− t

m
)k.

• It remains to show that t
m ≈ e− kn

m with high probability. We
already have that E[t

m] =
1
m
∑m

i=1 Pr(A[i] = 0) ≈ e− kn
m .

15

Correct Analysis Sketch

Need to show that the number of zeros t in A after n insertions
is bounded by O

(
e−

kn
m

)
with high probability.

Can apply Theorem 2 of:
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

16

