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- Problem Set 1is due tomorrow at 11:59pm in Gradescope.

- Remember to make one submission per group, but all
group members must be enrolled in Gradescope and have
their names added to the submission.

- Submit 4 of the 5 questions and just submit nothing for
the challenge problem that you didn't complete.

- Quiz 3 is due Monday at 8pm.




Last Class:

- Higher moment bounds and exponential concentration bounds
- Bernstein inequality and the Chernoff bound

- Connection to the central limit theorem.
This Class:

- Finish example application of exponential concentration
bounds.

- Bloom filters: random hashing to maintain a large set in small
space.
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We hash m values x;, ..., X, using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [m], Pr(h(x)) = i) = -~ and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?
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Upshot: If we randomly hash m items into a hash table with m
entries the maX|mum load per bucket is O(log m) Wlth very
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maximum load is bounded by O(v/m) with good MoJ "
probability (good exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m).
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Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability § > 0 of false positives. l.e, for any
X

’

Pr(query(x) =1and x ¢ S) <.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.
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- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
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Bloom Filters

Chose k independent random hash functions hy, ..., himapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

S arm ™M I\k Insertions: X y
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Queries: X w ¥

No false negatives. False positives more likely with more insertions.



Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.
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run insert(x) so that if it comes in again, it will be cached.



Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.
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- When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

- False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of § = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.
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- When a new rating is inserted for (usery, moviey), add
(usery, moviey) to a bloom filter.

- Before reading (usery, movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.
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Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1 2

- When a new rating is inserted for (usery, moviey), add
(usery, moviey) to a bloom filter.

- Before reading (usery, movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

- False positive: A read is made to a possibly empty cell. A§ = .05
false positive rate gives a 95% reduction in these empty reads.
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More Applications

- Database Joins: Quickly eliminate most keys in one column that
don't correspond to keys in another.

- Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

- Spam/Fraud Detection:

- Bit.ly and Google Chrome use bloom filters to quickly check
if a url maps to a flagged site and prevent a user from
following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

- Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions

involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).
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For a bloom filter with m bits and k hash functions, the insertion and
query time is O(R).
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How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

Pr(All] = 0) = (1 - ;})m

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%
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How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?
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Step 2: What is the probability that querying a new item w gives a
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How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "

bit of the array A is still 0?
1 kn i /
Pr(Ali] = 0) = (1 - ) ~e

m
Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
=Pr(Alh(w. 1) % ... x Pr(Alhg(w)] = 1)

= 4 Actually Incorrect! Dependent events.

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%




Correct Analysis Sketch

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(AIM(W)] = ... = Alhy(w)] = 1)
Pr(A[h:(w)] = 1) x ... x Pr(Alhu(w)] = 1).

l.e., the events Alhy(w)] = 1,.., Alhg(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h; is a fully random
hash function, Pr(Alhj(w)] =1) =1 — %

- Thus conditioned on this event, the false positive rate is
k
(1-8)"
m

+ It remains to show that £ ~ e~ with high probability. We
kn

already have that E[t] = L 3" Pr(A[]] = 0) ~ e~ m.
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Correct Analysis Sketch

Need to show that the number of zeros t in A after n insertions
is bounded by O (e*%) with high probability.

Can apply Theorem 2 of:
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

16



