COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 6

- Problem Set 1is due tomorrow at 11:59pm in Gradescope.

- Remember to make one submission per group, but all
group members must be enrolled in Gradescope and have
their names added to the submission.

- Submit 4 of the 5 questions and just submit nothing for
the challenge problem that you didn't complete.

- Quiz 3 is due Monday at 8pm.

Last Class:

- Higher moment bounds and exponential concentration bounds
- Bernstein inequality and the Chernoff bound

- Connection to the central limit theorem.
This Class:

- Finish example application of exponential concentration
bounds.

- Bloom filters: random hashing to maintain a large set in small
space.

Application to Random Hashing

128-bit IP addresses Hash Table

=1
ol 72162542) i

172.16.256.1

A WN R

192.168.134

h(16582616) =1590

16.58.26.164

We hash m values x;, ..., X, using a random hash function into
a table vvith(n = mlentries.

Application to Random Hashing

128-bit IP addresses Hash Table

easad)7 *

e L, —
>
”
\ = m——
A .

h(16582616) =1590

172.16.256.1

AWN R

192.168.134

16.58.26.164

We hash m values x;, ..., X, using a random hash function into
a table with n = m entries.

‘\le, forallj € [m] and i € [m], Pr(h(x;) = i) = - and hash
values are chosen independently.

Application to Random Hashing

128-bit IP addresses

Hash Table

172.16.256.1

AWN R

-1 =
o st) *——
>
>
¢
W =]

h(16582616) =1590

192.168.134

16.58.26.164.

We hash m values x;, ..., X, using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [m], Pr(h(x)) = i) = -~ and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?

Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S;; be 1 |f><,
is hashed into bucket i (h(x;) = i) and 0 otherwise. T

—
m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].

Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

1
E c\,l») vy
m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].

Maximum Load in Randomized Hashing

Let S; be the number of items hashed into position i and S; ; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

M E (] BlS] = YOES = m- =1 o 2]

Jj=1

By the Chernoff Bound: for any § > 0,
1[—(&) Ci-%G) ,

V7 2
Pr(S; >1+6) <Pr (ZSf7j—1 >5-,u> < 2exp <—26+5>

m: total number of items hashed and size of hash table. xq, ..., Xm: the items.
h: random hash function mapping xi, .. ., Xm — [m].

Maximum Load in Randomized Hashing

n
Zs,—rw

Pr(Si>1+9) < Pr(
i=1

62
>0 §2exp(2+§>.

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.

Maximum Load in Randomized Hashing

n
Pr(Si>140) < Pr<Zs,—Jw

i=1
Sef é =5log m.\Gives:

62
>0 §2exp(2+§>.

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.

Maximum Load in Randomized Hashing

(

Pr(S; > <Pr<

62
<2 .
&P (2+ §>
Se£ 6 =5log m] Gives:

Pr(S; 2<5|ogm>+1) < Jexp (WW)Z)
L —

24 5logm
—_—_—

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.

Maximum Load in Randomized Hashing

n
Zs,—rw

i=1

Pr(S/ZT+5)§Pr<

62
>0 §2exp(2+§>.

S log m)?
24 5logm

Set § = 5logm. Gives:

< 2exp(—3logm) 3
< m

IA

Pr(S; > S5logm +1) < 2exp(

ey T STl

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.

Maximum Load in Randomized Hashing

n
Zs,—rw

Pr(Si>1+9) < Pr(
i=1

62
>0 §2exp(2+§>.

(5log m)?
24 5logm

Set § = 5logm. Gives:

Pr(S; > S5logm +1) < 2exp(

) < 2exp(—3logm) < —.
‘r\-

Apply Union Bound:

m
Pr(maxS; > 5logm + 1) = Pr (U(S,- > 5logm + 1))

ie[m] i

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.

Maximum Load in Randomized Hashing

n
Zs,—rw

i=1

2
Pr(S,-ZT+(5)§Pr< 25>§2exp(2i_6>.

S@Gives:
(5log m)?

2
Pr(S;j > 5logm + 1) < 2exp (2—}—5|ogm) < 2exp(—3logm) < @

Apply Union Bound:

m
Pr(maxS; > 5logm + 1) = Pr (U(S,- > 5logm + 1))

ie[m] i
D(lw@r\ =
2 2
gZPr(S,25logm+1)§m-ﬁ e
=1 T ———
<c!

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket i. S; ;: indicator if x; is hashed to bucket i. 4: any value > 0.

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is O(log m).

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in
each bucket, worst case query time is %(Iog m).

-{Using Chebyshev's inequality could show the
maximum load is bounded by O(v/m) with good
probability (good exercise).

Maximum Load in Randomized Hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maX|mum load per bucket is O(log m) Wlth very

high probability. ‘C"\\ﬂ W) 2 \ WC 5‘
e Y A W) ;\,\ b<] AN \A\/JV\
- So, even with a simple linked list to store the |tems in

each bucket, worst case query time is O(log m). P\;L;” .
“'1
- Using Chebyshev's inequality could only show the): e

maximum load is bounded by O(v/m) with good MoJ "
probability (good exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m).

VAR (33) A B)

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time.

Li‘ e Y

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

P J; D, 05

- Allow small probability § > 0 of false positives. l.e, for any
XI

Pr(query(x) =1and x ¢ S) <.

/l
17 (a\/\wﬁ(x):\) %S\ X%‘f)

Approximately Maintaining a Set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability § > 0 of false positives. l.e, for any
X

’

Pr(query(x) =1and x ¢ S) <.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].
. . — §4 . . . o
- Maintain an array A containing m bits, all initially 0.
- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.

Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.

m bitarray A| 0 0 0 0 0 0 0 0 0 0

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions

m bitarray A| 0 0 0 0 0 0 0 0 0 0

Queries:

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

Insertions: X

m bitarray A| 0 0 0 0 0 0 0 0 0 0

Queries:

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
\&'_ /B Insertions: x
hy(x)

m bitarray A| 1 0 0 0 0 0 0 0 0 0

Queries:

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

Insertions: X

m bitarray A| 1 0 0 0 1 0 0 0 0 0

Queries:

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

Insertions: X

m bitarray A| 1 0 0 0 1 0 0 0 1 0

Queries:

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

Insertions: X

m bitarray A| 1 0 0 0 1 0 0 0 1 0

Queries: X

Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if Alh1(X)] = ... = A[h(X)] =
Insertions:
m bitarray A| 1 0 0 0 0 1 0
Queries:

Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if Alh1(X)] = ... = A[h(X)] =
Insertions:
m bitarray A| 1 0 0 0 0 1 0
\«/
Queries: X

Bloom Filters

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): setall bits A[hi(X)] = ... = Alhp(X)] := 1.
- query(x): return Tonly if Alh1(X)] = ... = A[h(X)] =
Insertions:
m bitarray A| 1 0 0 0 0 1 0
\«/
Queries: X

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions: X y

m bitarray A| 1 1 0 0 1 0 1 0 1 0

v

Queries: X

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions: X y

m bitarray A| 1 1 0 0 1 0 1 0 1 0

v

Queries: X w

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions: X y

m bitarray A| 1 1 0 0 1 0 1 0 1 0

v

w

Queries:

Bloom Filters

Chose k independent random hash functions hy, ..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return Tonly if A[h,(xX)] = ... = Alh(X)] = 1.
Insertions: X y

m bitarray A| 1 1 0 0 1 0 1 0 1 0

AV

w

Queries:

Bloom Filters

Chose k independent random hash functions hy, ..., himapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[hy(x)] = ... = A[hp(X)] :== 1.
- query(x): return 1only if A[h,(X)] = ... = Alhg(x)] = 1.

S arm ™M I\k Insertions: X y

/2]L.;-\&S —\/\ Y
e~y d

m bitarray A| 1] 0 1 0 1 0 1 0

N7

Queries: X w ¥

No false negatives. False positives more likely with more insertions.

Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

g 14000

S 12000

S

2 10000

3

2 8000

& 6000

£ oo .

S 4000 . ',
Bloom filter

% 2000 4— Bloom filter ——p

B turned on

0
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

g 100
§ 12000
g

2 10000

% 2000 4—— Bloom filter ——3p»

a8 o turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

- When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

g 100
§ 12000
g

2 10000

% 2000 —Bloom filter ———J»

a8 o turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

- When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

- False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of § = .05, the number
of cached one-hit-wonders will be reduced by at least 95%.

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

1

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1 2

- When a new rating is inserted for (usery, moviey), add
(usery, moviey) to a bloom filter.

- Before reading (usery, movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

1

Applications: Databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 1|4

Users

1 2

- When a new rating is inserted for (usery, moviey), add
(usery, moviey) to a bloom filter.

- Before reading (usery, movie,) (possibly via an out of memory
access), check the bloom filter, which is stored in memory.

- False positive: A read is made to a possibly empty cell. A§ = .05
false positive rate gives a 95% reduction in these empty reads.

1

More Applications

- Database Joins: Quickly eliminate most keys in one column that
don't correspond to keys in another.

- Recommendation systems: Bloom filters are used to prevent
showing users the same recommendations twice.

- Spam/Fraud Detection:

- Bit.ly and Google Chrome use bloom filters to quickly check
if a url maps to a flagged site and prevent a user from
following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

- Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions

involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).

12

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(R).

13

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

13

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of{items inserted& Py

Step 1: What is the probability that after inserting n elements, the "
. TR -
bit of the array A is still 07 \AW* " | *5,

N
NN ~/ J j LN "N

PofiknAf o |

13

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.

Pr(All] = 0) = Pr (h1(x)) # 1 11... 1 ha(x) # i
ﬂhj(Xz);ﬁi...ﬂhk(Xz)#iﬂ...>

13

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.

Pr(All] = 0) = Pr (N1(x)) # 11 (1 ha(xe) # i
ﬂhj(Xz);ﬁi...ﬂhk(Xz)#iﬂ...>
= Pr (hi(a) £ 1) x ... x Pr (he(x) £ 1) x Pr(hi(x2) £1) ...

k-n events each occuring with probability 1—1/m

13

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate § depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.

Pr(All] = 0) = Pr (N1(x)) # 11 (1 ha(xe) # i
ﬂhj(Xz);ﬁi...ﬂhk(Xz)#iﬂ...>
= Pr (hi(a) £ 1) x ... x Pr (he(x) £ 1) x Pr(hi(x2) £1) ...

k-n events each occuring with probability 1—1/m

(-3

13

How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

Pr(All] = 0) = (1 - ;})m

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%

How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

Pr(Ai] = 0) = (1 - ;})m ~e

r2y=c

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%

How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?
1 fen ki
Pr(A[l]=0) = (1 - m) ~e
Step 2: What is the probability that querying a new item w gives a

false positive?
- \(r\/ |§
N~

|~ e

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%

How does the false positive rate § depend on m, k, and the number
of items inserted?
Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

1 kn

Pr(al = 0) = (1-)m N

m
Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
= Pr(A[h1(w)] = 1) x ... x Pr(Alhp(w)] = 1)

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%

How does the false positive rate § depend on m, k, and the number
of items inserted?
Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

1 kn

Pr(al = 0) = (1-)m N

m

Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
= Pr(A[h1(w)] = 1) x ... x Pr(Alhp(w)] = 1)

kn k
-(-%)

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%

How does the false positive rate § depend on m, k, and the number
of items inserted?
Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?

1 kn

Pr(al = 0) = (1-)m N

m

Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
= Pr(A[h1(w)] = 1) x ... x Pr(Alhp(w)] = 1)

N
= (1 - e‘%) Actually Incorrect!

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%

How does the false positive rate § depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the "

bit of the array A is still 0?
1 kn i /
Pr(Ali] = 0) = (1 -) ~e

m
Step 2: What is the probability that querying a new item w gives a
false positive?
Pr(Alhy(w)] = ... =Alhp(w)] =1)
=Pr(Alh(w. 1) % ... x Pr(Alhg(w)] = 1)

= 4 Actually Incorrect! Dependent events.

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... hg: hash functions, A: bit array, §: false positive rate. 1%

Correct Analysis Sketch

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(AIM(W)] = ... = Alhy(w)] = 1)
Pr(A[h:(w)] = 1) x ... x Pr(Alhu(w)] = 1).

l.e., the events Alhy(w)] = 1,.., Alhg(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h; is a fully random
hash function, Pr(Alhj(w)] =1) =1 — %

- Thus conditioned on this event, the false positive rate is
k
(1-8)"
m

+ It remains to show that £ ~ e~ with high probability. We
kn

already have that E[t] = L 3" Pr(A[]] = 0) ~ e~ m.
15

Correct Analysis Sketch

Need to show that the number of zeros t in A after n insertions
is bounded by O (e*%) with high probability.

Can apply Theorem 2 of:
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

16

