COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 6

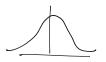
Logistics

- Problem Set 1 is due tomorrow at 11:59pm in Gradescope.
- Remember to make one submission per group, but all group members must be enrolled in Gradescope and have their names added to the submission.
- Submit 4 of the 5 questions and just submit nothing for the challenge problem that you didn't complete.
- Quiz 3 is due Monday at 8pm.

Last Time

Last Class:

- · Higher moment bounds and exponential concentration bounds
- · Bernstein inequality and the Chernoff bound
- Connection to the central limit theorem.

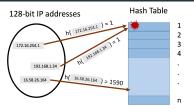


This Class:

- Finish example application of exponential concentration bounds.
- Bloom filters: random hashing to maintain a large set in small space.

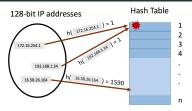
3

Application to Random Hashing



We hash m values x_1, \ldots, x_m using a random hash function into a table with n = m entries.

Application to Random Hashing

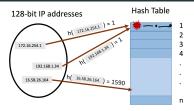


We hash m values x_1, \ldots, x_m using a random hash function into a table with n = m entries.

I.e., for all $j \in [m]$ and $i \in [m]$, $Pr(h(x_j) = i) = \frac{1}{m}$ and hash values are chosen independently.

4

Application to Random Hashing



We hash m values x_1, \ldots, x_m using a random hash function into a table with n = m entries.

• I.e., for all $j \in [m]$ and $i \in [m]$, $Pr(h(x_j) = i) = \frac{1}{m}$ and hash values are chosen independently.

What will be the maximum number of items hashed into the same location?

Let S_i be the number of items hashed into position i and $S_{i,j}$ be 1 if x_j is hashed into bucket i ($h(x_j) = i$) and 0 otherwise.

m: total number of items hashed and size of hash table. x_1, \ldots, x_m : the items.

h: random hash function mapping $x_1, \ldots, x_m \to [m]$.

Let S_i be the number of items hashed into position i and $S_{i,j}$ be 1 if x_j is hashed into bucket i ($h(x_j) = i$) and 0 otherwise.

$$\mathbb{E}[S_{i}] = \sum_{j=1}^{m} \mathbb{E}[S_{i,j}] = m \cdot (\frac{1}{m}) = 1$$

$$\text{Pr}\left(S_{i} \geq C\right) \leq ?$$

$$\text{Landow}$$

$$\text{Chay And } (\text{And Off})$$

m: total number of items hashed and size of hash table. x_1, \ldots, x_m : the items.

h: random hash function mapping $x_1, \ldots, x_m \to [m]$.

Let S_i be the number of items hashed into position i and $S_{i,j}$ be 1 if x_j is hashed into bucket i ($h(x_j) = i$) and 0 otherwise.

$$\mathbb{E}[S_i] = \sum_{i=1}^m \mathbb{E}[S_{i,j}] = m \cdot \frac{1}{m} = 1 \quad \text{for all } \mathbb{E}[S_i]$$

By the Chernoff Bound: for any
$$\delta \ge 0$$
,
$$\begin{cases} \varsigma_i - \varphi(\varsigma_i) \\ \\ \end{cases}$$

$$\Pr(S_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n S_{i,j} - 1\right| \ge \delta \cdot \mu\right) \le 2 \exp\left(-\frac{\delta^2}{2 + \delta}\right)$$

m: total number of items hashed and size of hash table. x_1, \ldots, x_m : the items. h: random hash function mapping $x_1, \ldots, x_m \to [m]$.

$$\Pr(S_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n S_{i,j} - 1\right| \ge \delta\right) \le 2\exp\left(-\frac{\delta^2}{2 + \delta}\right).$$

$$\Pr(\mathbf{S}_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n \mathbf{S}_{i,j} - 1\right| \ge \delta\right) \le 2\exp\left(-\frac{\delta^2}{2 + \delta}\right).$$
Set $\delta = 5\log m$. Gives:

$$\Pr(\mathbf{S}_{i} \geq 1 + \delta) \leq \Pr\left(\left|\sum_{i=1}^{n} \mathbf{S}_{i,j} - 1\right| \geq \delta\right) \leq 2 \exp\left(-\frac{\delta^{2}}{2 + \delta}\right).$$

$$\operatorname{Set}_{\delta} = 5 \log m \text{ Gives:}$$

$$\Pr(\mathbf{S}_{i} \geq (5 \log m) + 1) \leq 2 \exp\left(-\frac{(5 \log m)^{2}}{2 + 5 \log m}\right)$$

$$\Pr(S_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n S_{i,j} - 1\right| \ge \delta\right) \le 2\exp\left(-\frac{\delta^2}{2 + \delta}\right).$$

Set $\delta = 5 \log m$. Gives:

$$\Pr(S_i \geq 5 \log m + 1) \leq 2 \exp\left(-\frac{(5 \log m)^2}{2 + 5 \log m}\right) \leq 2 \exp(-3 \log m) \leq \frac{2}{m^3}.$$

$$2 \leq \log m + 1 \leq 2 \exp(-3 \log m) \leq \frac{2}{m^3}.$$

$$2 \leq \log m + 1 \leq 2 \exp(-3 \log m) \leq \frac{2}{m^3}.$$

$$2 \leq \log m + 1 \leq 2 \exp(-3 \log m) \leq \frac{2}{m^3}.$$

$$2 \leq \log m + 1 \leq 2 \exp(-3 \log m) \leq \frac{2}{m^3}.$$

$$2 \leq \log m + 1 \leq 2 \exp(-3 \log m) \leq \frac{2}{m^3}.$$

$$2 \leq \log m + 1 \leq 2 \exp(-3 \log m) \leq \frac{2}{m^3}.$$

$$\Pr(S_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n S_{i,j} - 1\right| \ge \delta\right) \le 2 \exp\left(-\frac{\delta^2}{2 + \delta}\right).$$

Set $\delta = 5 \log m$. Gives:

$$\Pr(\underline{(S_i \ge 5\log m + 1)} \le 2\exp\left(-\frac{(5\log m)^2}{2 + 5\log m}\right) \le 2\exp(-3\log m) \le \frac{2}{m^3}.$$

Apply Union Bound:

$$\Pr(\max_{i \in [m]} S_i \ge 5 \log m + 1) = \Pr\left(\bigcup_{i=1}^m (S_i \ge 5 \log m + 1)\right)$$

$$\Pr(\mathbf{S}_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n \mathbf{S}_{i,j} - 1\right| \ge \delta\right) \le 2 \exp\left(-\frac{\delta^2}{2 + \delta}\right).$$
Set $\delta = 5\log m$. Gives:

$$\Pr(S_i \ge 5 \log m + 1) \le 2 \exp\left(-\frac{(5 \log m)^2}{2 + 5 \log m}\right) \le 2 \exp(-3 \log m) \le \frac{2}{m^3}$$

Apply Union Bound:

$$\Pr(\max_{i \in [m]} S_i \ge 5 \log m + 1) = \Pr\left(\bigcup_{j=1}^m (S_i \ge 5 \log m + 1)\right)$$

$$\le \sum_{j=1}^m \Pr(S_j \ge 5 \log m + 1) \le m \cdot \frac{2}{m^3} = \frac{2}{m^2}.$$

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

• So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $Q(\log m)$.
- Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).

entries the maximum load per bucket is $O(\log m)$ with very high probability. 'Fily' h(x) = i h(x)**Upshot:** If we randomly hash m items into a hash table with m

- Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).
- The Chebyshev bound holds even with a pairwise independent hash function. The stronger Chernoff-based bound can be shown to hold with a k-wise independent hash function for $k = O(\log m)$.

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is in the set. Both in O(1) time.

La hear table

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is in the set. Both in O(1) time. What data structure solves this problem?

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is in the set. Both in O(1) time. What data structure solves this problem?

• Allow small probability $\delta > 0$ of false positives. I.e., for any x,

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is in the set. Both in O(1) time. What data structure solves this problem?

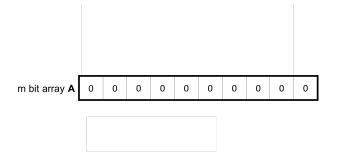
• Allow small probability $\delta > 0$ of false positives. I.e., for any x,

$$\Pr(query(x) = 1 \text{ and } x \notin S) \leq \delta.$$

Solution: Bloom filters (repeated random hashing). Will use much less space than a hash table.

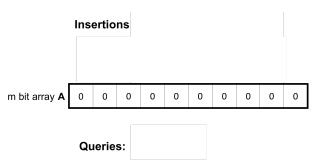
- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

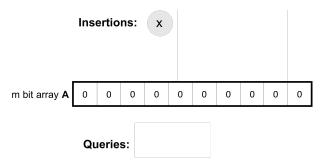
- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



9

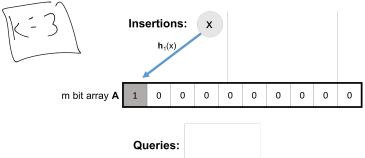
Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



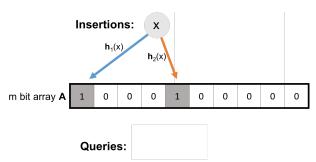
9

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

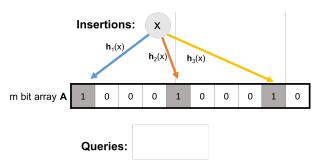
- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



9

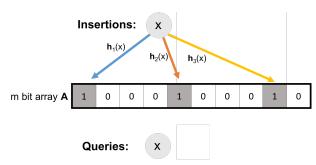
Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

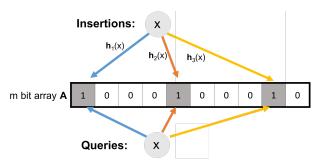


9

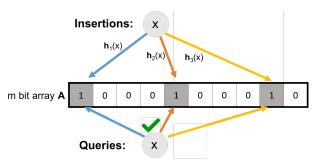
- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



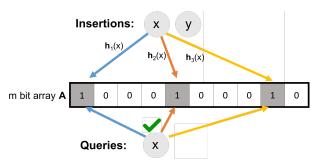
- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



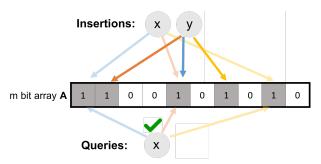
- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

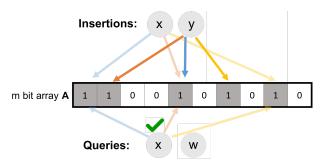


- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



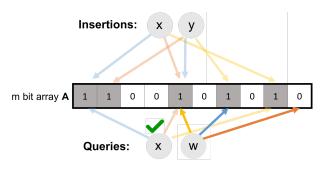
Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



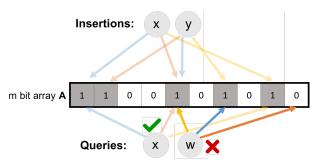
Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



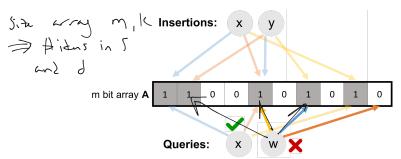
Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_{\underline{k}}$ mapping the universe of elements $U \to [m]$.

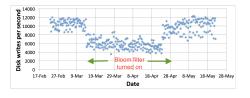
- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[h_1(x)] = \ldots = A[h_k(x)] = 1$.



No false negatives. False positives more likely with more insertions.

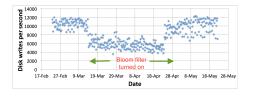
Applications: Caching

Akamai (Boston-based company serving 15-30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.



Applications: Caching

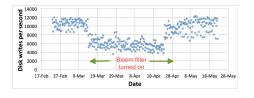
Akamai (Boston-based company serving 15 — 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.



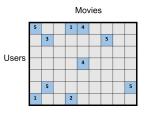
• When url x comes in, if query(x) = 1, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.

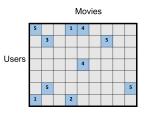
Applications: Caching

Akamai (Boston-based company serving 15 — 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.

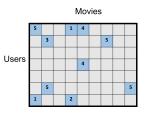


- When url x comes in, if query(x) = 1, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\underline{\delta} = .05$, the number of cached one-hit-wonders will be reduced by at least 95%.





- When a new rating is inserted for (user_x, movie_y), add (user_x, movie_y) to a bloom filter.
- Before reading (*user_x*, *movie_y*) (possibly via an out of memory access), check the bloom filter, which is stored in memory.



- When a new rating is inserted for (user_x, movie_y), add (user_x, movie_y) to a bloom filter.
- Before reading (user_x, movie_y) (possibly via an out of memory access), check the bloom filter, which is stored in memory.
- False positive: A read is made to a possibly empty cell. A $\delta=.05$ false positive rate gives a 95% reduction in these empty reads.

More Applications

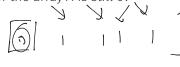
- Database Joins: Quickly eliminate most keys in one column that don't correspond to keys in another.
- Recommendation systems: Bloom filters are used to prevent showing users the same recommendations twice.
- Spam/Fraud Detection:
 - Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
 - Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.
- Digital Currency: Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k).

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?



$$\frac{\omega}{\omega \cdot |c|}$$

$$\left(1-\frac{1}{\kappa}\right)^{2}$$

exch nuk k rudm positions 4

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0? $n \times k$ total hashes must not hit bit i.

$$Pr(A[i] = 0) = Pr(h_1(x_1) \neq i \cap ... \cap h_k(x_k) \neq i$$
$$\cap h_1(x_2) \neq i ... \cap h_k(x_2) \neq i \cap ...)$$

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0? $n \times k$ total hashes must not hit bit i.

$$Pr(A[i] = 0) = Pr(h_1(x_1) \neq i \cap ... \cap h_k(x_k) \neq i$$

$$\cap h_1(x_2) \neq i ... \cap h_k(x_2) \neq i \cap ...)$$

$$= \underbrace{Pr(h_1(x_1) \neq i) \times ... \times Pr(h_k(x_1) \neq i) \times Pr(h_1(x_2) \neq i) ...}$$

 $k \cdot n$ events each occurring with probability 1 - 1/m

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0? $n \times k$ total hashes must not hit bit i.

$$\Pr(A[i] = 0) = \Pr\left(h_1(x_1) \neq i \cap \ldots \cap h_k(x_k) \neq i \\ \qquad \qquad \cap h_1(x_2) \neq i \ldots \cap h_k(x_2) \neq i \cap \ldots\right)$$

$$= \underbrace{\Pr\left(h_1(x_1) \neq i\right) \times \ldots \times \Pr\left(h_k(x_1) \neq i\right) \times \Pr\left(h_1(x_2) \neq i\right) \ldots}_{k \cdot n \text{ events each occurring with probability } 1 - 1/m}$$

$$= \left(1 - \frac{1}{m}\right)^{kn}$$

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{Rn}$$

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

$$\left(1 - \frac{1}{m}\right) = \frac{1}{e}$$

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$Pr (A[h_1(w)] = ... = A[h_k(w)] = 1)$$

$$= Pr(A[h_1(w)] = 1) \times ... \times Pr(A[h_k(w)] = 1)$$

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$Pr (A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

$$= Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1)$$

$$= \left(1 - e^{-\frac{kn}{m}}\right)^k$$

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$\begin{split} \Pr\left(A[\mathbf{h}_1(w)] = \ldots &= A[\mathbf{h}_k(w)] = 1\right) \\ &= \Pr(A[\mathbf{h}_1(w)] = 1) \times \ldots \times \Pr(A[\mathbf{h}_k(w)] = 1) \\ &= \left(1 - e^{-\frac{kn}{m}}\right)^k \quad \text{Actually Incorrect!} \end{split}$$

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}} \quad \checkmark$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$\Pr\left(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1\right)$$

$$= \Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_k(w)] = 1)$$

$$= \left(1 - e^{-\frac{kn}{m}}\right)^k \text{ Actually Incorrect! Dependent events.}$$

Correct Analysis Sketch

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \le m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$Pr(A[h_1(w)] = ... = A[h_k(w)] = 1)$$

= $Pr(A[h_1(w)] = 1) \times ... \times Pr(A[h_k(w)] = 1).$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since \mathbf{h}_j is a fully random hash function, $\Pr(A[\mathbf{h}_j(w)] = 1) = 1 \frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $\left(1 \frac{t}{m}\right)^k$.
- It remains to show that $\frac{t}{m} \approx e^{-\frac{kn}{m}}$ with high probability. We already have that $\mathbb{E}[\frac{t}{m}] = \frac{1}{m} \sum_{i=1}^{m} \Pr(A[i] = 0) \approx e^{-\frac{kn}{m}}$.

Correct Analysis Sketch

Need to show that the number of zeros t in A after n insertions is bounded by $O\left(e^{-\frac{kn}{m}}\right)$ with high probability.

Can apply Theorem 2 of:

http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf