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- Problem Set 1is due this Friday at 11:59pm.
- Quiz question on class pacing:

- Way too fast: 14.

- A bit too fast: 71.

- Just right: 65.

- A bit too slow: 11.

. WayToo?lovv: 1.

- I will correct quiz scores so everyone gets full credit on the
last question if they answered it.

- Reminder that we don’t grant individual extensions on the
quizzes — we just drop the lowest score for everyone.
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- Chebyshev's inequality and the law of large numbers.

—

+ The union bound.

- Application to hashing for load balancing.

- Start on exploring higher moment bounds.
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Last Class:

- Chebyshev's inequality and the law of large numbers.
-+ The union bound.
- Application to hashing for load balancing.

- Start on exploring higher moment bounds.
This Time:

- Higher moment bounds — exponential concentration bounds
and the central limit theorem.
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Quiz Questions
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My (not very popular) photo hosting service recet lownload requests per day. Each _ |
download request is completed successfully with probability O an upper bound on Pf‘ (t ZD N P

the probability that my service fails to t least one requ ccesstylly. Hint: do

not assume independence of the request completions.

Type your answer...
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Quiz Questions
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My (not very popular) photo hosting service receives 2 download requests per day. Each
download request is completed successfully with probability 0.95. Give an upper bound on
the probability that my service fails to complete at least one request successfully. Hint: do
not assume independence of the request completions.

Type your answer...
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If the failures were independent: 1 — .95” = 0.0975. Only a bit

smaller than the upper bound of 0.1. L\’ O‘ 05>7_
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More Union Bound Intuition



Flipping Coins

We flip n = 100 independent coins, each are heads with probability
1/2 and tails with probability 1/2. Let H be the number of heads.

E[H] =

n
2

— 50 and Var[H] = 2 — 25

Markov's:

Pr(H > 60) < .833
Pr(H > 70) < .714
Pr(H > 80) < .625

Chebyshev’s:

Pr(H > 60) < .25
Pr(H > 70) < .0625
Pr(H > 80) < .0278

In Reality:

Pr(H > 60) = 0.0284
Pr(H > 70) = .000039
Pr(H > 80) < 107?

H has a simple Binomial distribution, so can compute these

probabilities exactly.




Tighter Concentration Bounds

Markov and Chebyshev's inequalities apply much more generally
than to Binomial random variables like coin flips, but for this reason
can be loose.

Can we obtain tighter concentration bounds that still apply to very
general distributions?

- Markov's: Pr(X > t) < @. First Moment.

- Chebyshev's: Pr(]X — E[X]| > t) = Pr(]X — E[X]]? > t?) < YaXl.
Second Moment. -

- What if we just apply Markov's inequality to even higher
moments?



A Fourth Moment Bound

Consider any random variable X:

Pr(X — EIX]| > ) = Pr (X — EX])" > t)
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A Fourth Moment Bound

Consider any random variable X: (o dhovts

|k X — "
Pr(X—E[X]| 2 t) = Pr (X~ EX))" 2 1) < W
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A Fourth Moment Bound

Consider any random variable X:
E |(X—E[X)
Pr(jX —E[X]| > t) = Pr ((x ~“EX)* > t") < = .

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment:



A Fourth Moment Bound

Consider any random variable X:
E | (X — E[X])*
Pr(X—E[X]| = t) = Pr ((x —EX))* > t") < m

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment:
100 “
E[(H-EM])'| =E (Z H — 50)
i=1

where H; = 1if coin flip i is heads and 0 otherwise.



A Fourth Moment Bound

Consider any random variable X

E (X~ E[X)’]

Pr(jX —E[X]| > t) = Pr ((x—E[X])‘* > t") < -

Application to Coin Flips: Recall: n =100 independent fair coins, H is

the number of heads.
(Hy tHa Hb} )1

\.’
- Bound the fourth moment: z Zb’ 1
100 /
[(H ]E[H] ] <ZH — 50) = Z CW? E[H,‘H]Hng]
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where H; = 1if coin flip i is heads and 0 otherwjse. Then apply
some messy calculations...
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A Fourth Moment Bound

Consider any random variable X

E (X~ E[X)’]

Pr(jX —E[X]| > t) = Pr ((x—E[X])‘* > t") < -

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment:

[(H E[H]) } [(%H —5o> } = 3 ciwE[HH;HH] = 1862.5
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where H; = 1if coin flip i is heads and 0 otherwise. Then apply
some messy calculations...



A Fourth Moment Bound

Consider any random variable X

E (X~ E[X)’]

Pr(jX —E[X]| > t) = Pr ((x—E[X])‘* > t") < -

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads. 2

- Bound the fourth moment: \ o0

X
100 4 J
[(H ]E[H] ] |:( H} > :| = Z C,‘)‘ME[H,'H)'H/?HA
—_— Y.

where H; = 1if coin flip i is heads and 0 otherwise. Then apply
some messy calculations...

- Apply Fourth Moment Bound: Pr(|H — E[H]| > t) < 18522,
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Tighter Bounds

Chebyshev's: 41 Moment: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H>70)<.0116  Pr(H > 70) = .000039

Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H >80) < 10,
==

[ H: total number heads in 100 random coin flips. E[H] = 50.
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Can we just keep applying Markov's inequality to higher and higher
moments and getting tighter bounds?
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Chebyshev's: 41 Moment: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H>70)<.0116  Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) < 10~

Can we just keep applying Markov's inequality to higher and higher
moments and getting tighter bounds?

- Yes! To a point. v ((\” UX'EM\) > §al))
- In fact - don't n%to just apply Markov's to |X — E[X]\k for
some k. Can apply to any monotonic function f(|X — E[X]|).

P, (] B (ARHd 2 A1)

[ H: total number heads in 100 random coin flips. E[H] = 50.

Tighter Bounds



Tighter Bounds

Chebyshev's: 41 Moment: In Reality:
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Tighter Bounds

Chebyshev's: 41 Moment: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H>70)<.0116  Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) < 10~

Can we just keep applying Markov's inequality to higher and higher
moments and getting tighter bounds?

- Yes! To a point.

- In fact - don't need to just apply Markov's to |X — E[X]\k for
some k. Can apply to any monotonic function f(|X — E[X]|).

- Why monotonic? Pr(jX — E[X]| > t) = Pr (F(]X — E[X]|) > (1))

[ H: total number heads in 100 random coin flips. E[H] = 50.




Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Mq(X) = et-(X=E[X])

1



Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:
e (X = E[X])"
Mq(X) = el (X=E[X]) — Z —

k=0

1



Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Mi(X) = 0P — 3 tk(x—hi?‘ilxl)k

k=0

-+ M¢(X) is monotonic for any t > 0.
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:
e (X = E[X])"
Mq(X) = el (X=E[X]) — Z —

k=0

-+ M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly the
weights fall off (larger t = slower falloff).
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Me(X) = et —EX) — i (X~ EX])*

R!
k=0

- M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly the
weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
bounds).
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Mi(X) = 0P — 3 tk(x—hi?‘ilxl)k

k=0
- M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly the
weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0: m
‘I b}a\‘-(_ o0 I3
,\E_Q-\— <‘ —__m My(X) = ot (X—EX]) _ , X [X]) ‘
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- M) is monotonic for any t > 0. e sy e

V\v:,\.y_- nll W} b
- Weighted sum of all moments, with t controlling how slowly the

weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
bounds).

- Chernoff bound, Bernstein inequalities, Hoeffding's inequality,
Azuma'’s inequality, Berry-Esseen theorem, etc.

- We will not cover the proofs in this class.

1



Bernstein Inequality

i) M aean

Bernstein Inequality: Consider independent random variables
. . —_— n 2
Xi,..., Xy all falling in [-M,M]. Let p = E[}";_,X;] and ¢° =

Var[>1, Xi] = S°L, Var[X;]. For any t > 0:
P — T—

t2
Pr >t <2exp| 57— |-
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1, ..., Xy all falling in [-M,M]. Let p = E[>1,X] and o? =
Var[>1, Xi] = 3L, Var[X;]. For any t > 0:

t2
Pr >t <2exp| 57— |-

n
> X
=1
Assume that M =1 and plugint=s-o fors <o.
—_—

—_—
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1,..., %y all falling in [-17]. Let p = E[>X1,X] and o? =
Var[> 1, Xi] = S°L, Var[X]]. For any s > 0:

n

2
Pr < ZX, — U >Srr> < 2exp <S4>
/71—/”_\\_

Assume that M =1Tand plugint=s-o fors <o. \) /\O\/ﬂr\«,\
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1,..., %y all falling in [-17]. Let p = E[>X1,X] and o? =
Var[> 1, Xi] = S°L, Var[X]]. For any s > 0:

n 2
Pr < ZX, — U >Srr> < 2exp <S4>

=1
Assume that M =1 and plugint=s-o fors <o.

Compare to Chebyshev's: Pr (|37, X — p| > so) < 5.
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1,..., %y all falling in [-17]. Let p = E[>X1,X] and o? =
Var[> 1, Xi] = S°L, Var[X]]. For any s > 0:

n 2
Pr < ZX, — U >Srr> < 2exp <S4>

=1
Assume that M =1 and plugint=s-o fors <o.

Compare to Chebyshev's: Pr (|37, X — p| > so) < 5.

- An exponentially stronger dependence on s!
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Comparision to Chebyshev’'s

Consider again bounding the number of heads H in n =100
independent coin flips.

~

Chebyshev’s: Bernstein: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .21 Pr(H > 60) = 0.0284
Pr(H >70) <.0625  Pr(H>70)<.005 Pr(H>70)=.000039
Pr(H > 80) < .04 Pr(H > 80) <47 Pr(H > 80) < 1077

H: total number heads in 100 random coin flips. E[H] = 50.

13



Comparision to Chebyshev’'s

Consider again bounding the number of heads H in n =100
independent coin flips.

Chebyshev’s: Bernstein: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .21 Pr(H > 60) = 0.0284
Pr(H >70) <.0625  Pr(H>70)<.005 Pr(H>70)=.000039
Pr(H > 80) < .04 Pr(H > 80) <47 Pr(H > 80) < 1077

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. E[H] = 50.
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The Chernoff Bound

Bxy = BB W e BT RS E

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =

E[Y7,X]. Foranys >0 4= S
)
peolt ( ix/- — QL) < 2ex (—251"9 .
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The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =

E[>",X]. Forany s >0
2
> 5u> < 2exp (— 26_’_”5) .

Pr (
As § gets larger and larger, the bound falls of exponentially fast.

n
ZX/' —
i=1

\.
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Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in m Let u = E[D_X],
o? = Var[>_X]], and s < 0. Then:

2
Pr >5so | <2exp (—4).
: ~ o

n
in — K
= —_—
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Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? = Var[>_X]], and s < 0. Then:

2
Pr >5so | <2exp (—4).

n
in — K
=1
Can plot this bound for different s:
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Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? = Var[>_X]], and s < 0. Then:

2
Pr >5so | <2exp (—4).

n
in — K
=1
Can plot this bound for different s:

N

Looks a lot like a Gaussian (normal) distribution.
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Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? = Var[>_X]], and s < 0. Then:

2
Pr >5so | <2exp (—4).

n
in — K
=1
Can plot this bound for different s:

N

Looks a lot like a Gaussian (normal) distribution.
2 : __ 1 ==
N(0,0%) has density p(so) = == -e" 7. 5




N(0,0?) has density p(so) = ——— - e

2mwo?
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NS

N(0,0?%) has density p(so) = ——— - e~

2mwo?
~4¢ Exerdise: Using this can show that for X ~ A7(0, 02): for any s > 0,

s2
Pr(IX| >s-0) <2e77.
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NS

N(0,0?%) has density p(so) = ——— - e~

2mwo?
Exercise: Using this can show that for X ~ A/(0,0?): forany s > 0,
s2
Pr(IX| >s-0) <2e77.

Essentially the same bound that Bernstein’s inequality gives!
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NS

N(0,0?) has density p(so) = =— - e~

Exercise: Using this can show that for X ~ A(0, o?): for any s > 0,
s2
Pr(|X| >s-0) <2e7.
Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein's inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.

45 48 51 54
Means

16



Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

70|
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Means

x|
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Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

70|
60|
50|
c
$ 9
5
3 30|
LT 20}
10|

0
39 42 45 48 51 54 57 6.0

Means

x|

Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?
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Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

70)
60|
50|
c
$ 4ol
=
930
LT 20|
10}
o k3
39 42 45 48 51 54 57 60
Means

- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

- Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.
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