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Logistics

• Problem Set 1 is due this Friday at 11:59pm.
• Quiz question on class pacing:

• Way too fast: 14.
• A bit too fast: 71.
• Just right: 65.
• A bit too slow: 11.
• Way too slow: 1.

• I will correct quiz scores so everyone gets full credit on the
last question if they answered it.

• Reminder that we don’t grant individual extensions on the
quizzes – we just drop the lowest score for everyone.
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Last Time

Last Class:

• Chebyshev’s inequality and the law of large numbers.

• The union bound.

• Application to hashing for load balancing.

• Start on exploring higher moment bounds.

This Time:

• Higher moment bounds → exponential concentration bounds
and the central limit theorem.
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Concept Map
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Quiz Questions

If the failures were independent: 1− .952 = 0.0975. Only a bit
smaller than the upper bound of 0.1.
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More Union Bound Intuition
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Flipping Coins

We flip n = 100 independent coins, each are heads with probability
1/2 and tails with probability 1/2. Let H be the number of heads.

E[H] = n
2
= 50 and Var[H] = n

4
= 25

Markov’s:

Pr(H ≥ 60) ≤ .833
Pr(H ≥ 70) ≤ .714
Pr(H ≥ 80) ≤ .625

Chebyshev’s:

Pr(H ≥ 60) ≤ .25
Pr(H ≥ 70) ≤ .0625
Pr(H ≥ 80) ≤ .0278

In Reality:

Pr(H ≥ 60) = 0.0284
Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

H has a simple Binomial distribution, so can compute these
probabilities exactly.
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Tighter Concentration Bounds

Markov and Chebyshev’s inequalities apply much more generally
than to Binomial random variables like coin flips, but for this reason
can be loose.

Can we obtain tighter concentration bounds that still apply to very
general distributions?

• Markov’s: Pr(X ≥ t) ≤ E[X]
t . First Moment.

• Chebyshev’s: Pr(|X− E[X]| ≥ t) = Pr(|X− E[X]|2 ≥ t2) ≤ Var[X]
t2 .

Second Moment.

• What if we just apply Markov’s inequality to even higher
moments?
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A Fourth Moment Bound

Consider any random variable X:

Pr(|X− E[X]| ≥ t) = Pr
(
(X− E[X])4 ≥ t4

)

≤
E
[
(X− E[X])4

]

t4
.

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

• Bound the fourth moment:

E
[
(H− E[H])4

]
= E




( 100∑

i=1

Hi − 50
)4



=
∑

i,j,k,!

cijk!E[HiHjHkH!] = 1862.5

where Hi = 1 if coin flip i is heads and 0 otherwise.

Then apply
some messy calculations...

• Apply Fourth Moment Bound: Pr (|H− E[H]| ≥ t) ≤ 1862.5
t4 .
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Tighter Bounds

Chebyshev’s:

Pr(H ≥ 60) ≤ .25

Pr(H ≥ 70) ≤ .0625

Pr(H ≥ 80) ≤ .04

4th Moment:

Pr(H ≥ 60) ≤ .186

Pr(H ≥ 70) ≤ .0116

Pr(H ≥ 80) ≤ .0023

In Reality:

Pr(H ≥ 60) = 0.0284

Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

Can we just keep applying Markov’s inequality to higher and higher
moments and getting tighter bounds?

• Yes! To a point.

• In fact – don’t need to just apply Markov’s to |X− E[X]|k for
some k. Can apply to any monotonic function f (|X− E[X]|).

• Why monotonic? Pr (|X− E[X]| > t) = Pr (f (|X− E[X]|) > f(t)).

H: total number heads in 100 random coin flips. E[H] = 50. 10
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Mt(X) = et·(X−E[X])

=
∞∑

k=0

tk(X− E[X])k
k!

• Mt(X) is monotonic for any t > 0.

• Weighted sum of all moments, with t controlling how slowly the
weights fall off (larger t = slower falloff).

• Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
bounds).

• Chernoff bound, Bernstein inequalities, Hoeffding’s inequality,
Azuma’s inequality, Berry-Esseen theorem, etc.

• We will not cover the proofs in this class.
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn all falling in [−M,M]. Let µ = E[

∑n
i=1 Xi] and σ2 =

Var[
∑n

i=1 Xi] =
∑n

i=1 Var[Xi]. For any t ≥ 0:

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.

Assume that M = 1 and plug in t = s · σ for s ≤ σ.

Compare to Chebyshev’s: Pr
(∣∣∑n

i=1 Xi − µ
∣∣ ≥ sσ

)
≤ 1

s2 .

• An exponentially stronger dependence on s!
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn all falling in [-1,1]. Let µ = E[

∑n
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Var[
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i=1 Xi] =
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Comparision to Chebyshev’s

Consider again bounding the number of heads H in n = 100
independent coin flips.

Chebyshev’s:

Pr(H ≥ 60) ≤ .25
Pr(H ≥ 70) ≤ .0625
Pr(H ≥ 80) ≤ .04

Bernstein:

Pr(H ≥ 60) ≤ .21
Pr(H ≥ 70) ≤ .005
Pr(H ≥ 80) ≤ 4−5

In Reality:

Pr(H ≥ 60) = 0.0284
Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. E[H] = 50.
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The Chernoff Bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1}. Let µ =

E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls of exponentially fast.
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Interpretation as a Central Limit Theorem

Bernstein Inequality (Simplified): Consider independent ran-
dom variables X1, . . . , Xn falling in [-1,1]. Let µ = E[

∑
Xi],

σ2 = Var[
∑

Xi], and s ≤ σ. Then:

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ sσ
)

≤ 2 exp
(
−s2

4

)
.

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .
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Gaussian Tails

N (0,σ2) has density p(sσ) = 1√
2πσ2 · e−

s2
2 .

Exercise: Using this can show that for X ∼ N (0,σ2): for any s ≥ 0,

Pr (|X| ≥ s · σ) ≤ 2e− s2
2 .

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.
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Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity.

• Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

• Many random variables can be approximated as the sum of a
large number of small and roughly independent random effects.
Thus, their distribution looks Gaussian by CLT.
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