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Logistics

• Problem Set 1 due next Friday 9/20, at 11:59pm.
• Second quiz will be released today after class, due
Monday 8:00pm.
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Last Time

Last Class:

• 2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) expected space usage.

• Practical random hash functions: 2-universal and pairwise
independent hashing.

This Time:

• Hashing for load balancing in distributed systems. Motivating:
• Stronger concentration inequalities: Chebyshev’s
inequality, exponential tail bounds, and their connections
to the law of large numbers and central limit theorem.

• The union bound to bound the probability that one of
multiple possible correlated events happens.

• Some of the problem set questions use Chebyshev’s inequality.
After today you will be able to solve them.
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Another Application

Randomized Load Balancing:

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

• Often assignment is done via a random hash function. Why?
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Weakness of Markov’sExpected Number of requests assigned to server i:

E[Ri] =

n∑

j=1

E[Irequest j assigned to i] =
n∑

j=1

Pr [j assigned to i] = n
k
.

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]

2E[Ri]
=

1
2
.

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]
t2

.

(by plugging in the random variable X− E[X])
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Chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

What is the probability that X falls s standard deviations from it’s
mean?

Pr(|X− E[X]| ≥ s ·
√
Var[X]) ≤ Var[X]

s2 · Var[X] =
1
s2
.

X: any random variable, t, s: any fixed numbers.
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Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]

=
1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− | ≥ ε) ≤ Var[S]
ε2

=
σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.
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Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Ri =
n∑

j=1

Ri,j

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E[R2
i,j]− E[Ri,j]

2

= E[Ri,j]− E[Ri,j]
2

=
1
k
− 1

k2
≤ 1

k
=⇒ Var[Ri] ≤

n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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Bounding the Load via Chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] =
n
k and

Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr

(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)

≤ n/k
n2/k2

=
k
n
.

• Overload probability is small when k % n!

• Might seem counterintuitive – bound gets worse as k grows.

• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)

= Pr

([
R1 ≥

2n
k

]
∪
[
R2 ≥

2n
k

]
∪ . . . ∪

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k .
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The Union Bound

Union Bound: For any random events A1,A2, ..., Ak,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight? When A1, ..., Ak are all disjoint.
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Applying the Union Bound

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give each 2n

k
capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

( k⋃

i=1

[
Ri ≥

2n
k

])

≤
k∑

i=1

Pr

([
Ri ≥

2n
k

])
(Union Bound)

≤
k∑

i=1

k
n

=
k2

n

(Bound from Chebyshev’s)

As long as k ≤ O(
√
n), with good probability, the maximum server

load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] =

n
k . Var[Ri] =

n
k . 13
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Questions on union bound, Chebyshev’s inequality,
random hashing?
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Flipping Coins

We flip n = 100 independent coins, each are heads with probability
1/2 and tails with probability 1/2. Let H be the number of heads.

E[H] = n
2
= 50 and Var[H] =

n
4
= 25 → s.d. = 5

Markov’s:

Pr(H ≥ 60) ≤ .833
Pr(H ≥ 70) ≤ .714
Pr(H ≥ 80) ≤ .625

Chebyshev’s:

Pr(H ≥ 60) ≤ .25
Pr(H ≥ 70) ≤ .0625
Pr(H ≥ 80) ≤ .0278

In Reality:

Pr(H ≥ 60) = 0.0284
Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

H has a simple Binomial distribution, so can compute these
probabilities exactly.
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Tighter Concentration Bounds

To be fair.... Markov and Chebyshev’s inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?

• Markov’s: Pr(X ≥ t) ≤ E[X]
t . First Moment.

• Chebyshev’s: Pr(|X− E[X]| ≥ t) = Pr(|X− E[X]|2 ≥ t2) ≤ Var[X]
t2 .

Second Moment.

• What if we just apply Markov’s inequality to even higher
moments?
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A Fourth Moment BoundConsider any random variable X:

Pr(|X− E[X]| ≥ t) = Pr
(
(X− E[X])4 ≥ t4

)

≤
E
[
(X− E[X])4

]

t4
.

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

• Bound the fourth moment:

E
[
(H− E[H])4

]
= E




( 100∑

i=1

Hi − 50
)4



=
∑

i,j,k,!

cijk!E[HiHjHkH!] = 1862.5

where Hi = 1 if coin flip i is heads and 0 otherwise.

Then apply
some messy calculations...

• Apply Fourth Moment Bound: Pr (|H− E[H]| ≥ t) ≤ 1862.5
t4 .

17



A Fourth Moment BoundConsider any random variable X:

Pr(|X− E[X]| ≥ t) = Pr
(
(X− E[X])4 ≥ t4

)
≤

E
[
(X− E[X])4

]

t4
.

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

• Bound the fourth moment:

E
[
(H− E[H])4

]
= E




( 100∑

i=1

Hi − 50
)4



=
∑

i,j,k,!

cijk!E[HiHjHkH!] = 1862.5

where Hi = 1 if coin flip i is heads and 0 otherwise.

Then apply
some messy calculations...

• Apply Fourth Moment Bound: Pr (|H− E[H]| ≥ t) ≤ 1862.5
t4 .

17



A Fourth Moment BoundConsider any random variable X:

Pr(|X− E[X]| ≥ t) = Pr
(
(X− E[X])4 ≥ t4

)
≤

E
[
(X− E[X])4

]

t4
.

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

• Bound the fourth moment:

E
[
(H− E[H])4

]
= E




( 100∑

i=1

Hi − 50
)4



=
∑

i,j,k,!

cijk!E[HiHjHkH!] = 1862.5

where Hi = 1 if coin flip i is heads and 0 otherwise.

Then apply
some messy calculations...

• Apply Fourth Moment Bound: Pr (|H− E[H]| ≥ t) ≤ 1862.5
t4 .

17


