COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2024. Lecture 3

Logistics

Problem Set 1 was posted this morning on the course website and is due Friday 9/20 at 11:59pm.

- Three core problems and two challenge problems, pick one.
- On the quiz a large number of people cited concerns about their linear algebra and/or probability background. For linear algebra you have time to review – we will mostly use it after the midterm. For probability, come to my office hours today and next week if you would like to more review.
- I also highly recommend looking at the exercises in Foundations of Data Science and Probability and Computing. Feel free to ask for solutions to these on Piazza.
- It is common to not catch everything in lecture. I strongly encourage going back to the slides to review/check your understanding after class. Also come to office hours for more in-depth discussion/examples.

Content Overview

Last Class: 1/4 Expection

- · Linearity of variance.
- Markov's inequality: the most fundamental concentration bound. $Pr(X \ge t \cdot \mathbb{E}[X]) \le 1/t$.
- Algorithmic applications of Markov's inequality, linearity of expectation, and indicator random variables:
 - · Counting collisions to estimate CAPTCHA database size.
 - · Start on analyzing hash tables with random hash functions.

Content Overview

Today:

- · Finish up random hash functions and hash tables.
- Collision free hashing using a table with $O(m^2)$ slots to store m items.
- 2-level hashing, 2-universal and pairwise independent hash functions.
- Maybe start on application of random hashing to distributed load balancing.
- Through this application learn about Chebyshev's inequality, which strengthens Markov's inequality.

Quiz Questions

liverily of expectation

1 point

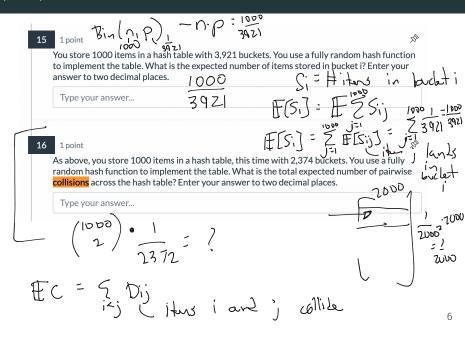
The expected number of inches of rain on Saturday is 5.8 and the expected number of inches on Sunday is 6.9. There is a 50% chance of rain on Saturday. If it rains on Saturday, there is a 75% chance of rain on Sunday. If it does not rain on Saturday, there is only a 25% chance of rain on Sunday. What is the expected number of inches of rainfall total over the weekend?

Type your answer...

$$E[S_{n} + S_{n}] = E[S_{n}] + E[S_{n}] + E[S_{n}] + E[S_{n}] = 5.8 + 6.9 = 12.7$$

SP

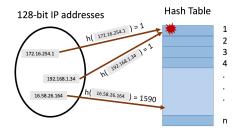
Quiz Questions



Quiz Questions

Hash Tables

We store m items from a large universe in a hash table with n positions.



- Want to show that when $\mathbf{h}: U \to [n]$ is a fully random hash function, query time is O(1) with good probability.
- Equivalently: want to show that there are few collisions between hashed items.

8

Let $C = \sum_{i,j \in [m], i < j} C_{i,j}$ be the number of pairwise collisions between items.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}$$
 (via the Captcha analysis)

Let $C = \sum_{i,j \in [m], i < j} C_{i,j}$ be the number of pairwise collisions between items.

$$\mathbb{E}[C] = \frac{m(m-1)}{2n}$$
 (via the Captcha analysis)

For
$$n = 4m^2$$
 we have: $\mathbb{E}[C] = \frac{m^2}{8m^2} \le \frac{1}{8}$.

Pr (have a collision) \le

$$\Pr(C \ge 1) \le \mathbb{E}[C] = \frac{1}{8}$$

Let $C = \sum_{i,j \in [m], i < j} C_{i,j}$ be the number of pairwise collisions between items.

$$\mathbb{E}[C] = \frac{m(m-1)}{2n}$$
 (via the Captcha analysis)

• For
$$n = 4m^2$$
 we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[C \ge 1] \le \frac{\mathbb{E}[C]}{1} = \frac{1}{8}$.

Let $C = \sum_{i,j \in [m], i < j} C_{i,j}$ be the number of pairwise collisions between items.

$$\mathbb{E}[C] = \frac{m(m-1)}{2n}$$
 (via the Captcha analysis)

• For
$$n = 4m^2$$
 we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[C \ge 1] \le \frac{\mathbb{E}[C]}{1} = \frac{1}{8}$.

$$\Pr[C=0] = 1 - \Pr[C \geq 1]$$

Let $C = \sum_{i,j \in [m], i < j} C_{i,j}$ be the number of pairwise collisions between items.

$$\mathbb{E}[C] = \frac{m(m-1)}{2n}$$
 (via the Captcha analysis)

• For
$$n=4m^2$$
 we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8m^2}\leq \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[C \ge 1] \le \frac{\mathbb{E}[C]}{1} = \frac{1}{8}$.

$$Pr[C = 0] = 1 - Pr[C \ge 1] \ge 1 - \frac{1}{8} = \frac{7}{8}$$

Let $C = \sum_{i,j \in [m], i < j} C_{i,j}$ be the number of pairwise collisions between items.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n} \quad \text{(via the Captcha analysis)}$$

$$\cdot \text{ For } n = \underbrace{4m^2} \text{ we have: } \mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \leq \frac{1}{8}.$$

Apply Markov's Inequality: $\Pr[C \ge 1] \le \frac{\mathbb{E}[C]}{1} = \frac{1}{8}$.

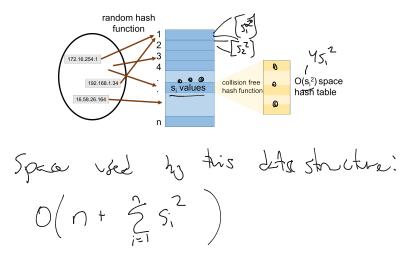
$$Pr[C = 0] = 1 - Pr[C \ge 1] \ge 1 - \frac{1}{8} = \frac{7}{8}$$

I.e., with probability at least 7/8 we have no collisions and thus O(1) query time. But we are using $O(m^2)$ space to store m items...

Want to preserve O(1) query time while using O(m) space.

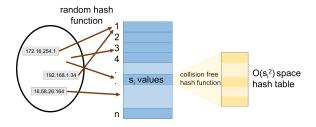
Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:



Want to preserve O(1) query time while using O(m) space.

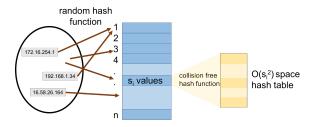
Two-Level Hashing:



• For each bucket with s_i values, pick a collision free hash function mapping $[s_i] \to [s_i^2]$.

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:



- For each bucket with s_i values, pick a collision free hash function mapping $[s_i] \rightarrow [s_i^2]$.
- Just Showed: A random function is collision free with probability $\geq \frac{7}{8}$ so can just generate a random hash function and check if it is collision free.

Query time for two level hashing is O(1): requires evaluating two hash functions.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: S = n #

 $\sum_{i=1}^{n} \mathbf{S}_{i}^{2}$

0(n)

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

Query time for two level hashing is O(1): requires evaluating two

hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[S_{i}^{2}]$

$$\mathbb{E}[s_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{h(x_{j})=i}\right)^{2}\right]$$

$$S_{i} = \sum_{j=1}^{m} \mathbb{I}_{h(x_{j})=i}$$

$$S_{i} = \sum_{j=1}^{m$$

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right]$$

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[S_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathsf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right].$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathsf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right].$$

• For j = k,

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathsf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right].$$

• For
$$j = k$$
,
$$\mathbb{E}\left[\mathbb{I}_{h(x_j)=i} \cdot \mathbb{I}_{h(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{h(x_j)=i}\right)^2\right]$$

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathsf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right].$$

• For
$$j = k$$
,
$$\mathbb{E}\left[\mathbb{I}_{h(x_j)=i} \cdot \mathbb{I}_{h(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{h(x_j)=i}\right)^2\right] = \Pr[h(x_j) = i]$$

$$= \mathbb{I}_{h(x_j)} = i$$

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathsf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right].$$

• For
$$j = k$$
,
$$\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right] = \Pr[\mathbf{h}(x_j)=i] = \frac{1}{n}.$$

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathsf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right].$$

• For
$$j = k$$
,
$$\mathbb{E}\left[\mathbb{I}_{h(x_j)=i} \cdot \mathbb{I}_{h(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{h(x_j)=i}\right)^2\right] = \Pr[h(x_j) = i] = \frac{1}{n}.$$

• For $i \neq k$.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathsf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right].$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right] = \Pr[\mathbf{h}(x_j)=i] = \frac{1}{n}.$
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[S_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathsf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right].$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{h(x_j)=i} \cdot \mathbb{I}_{h(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{h(x_j)=i}\right)^2\right] = \Pr[h(x_j) = i] = \frac{1}{n}.$
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_i)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \Pr[\mathbf{h}(x_j)=i \cap \mathbf{h}(x_k)=i]$

Query time for two level hashing is O(1): requires evaluating two

hash functions. What is the expected space usage?

Up to constants, space used is:
$$\mathbb{E}[\mathbf{S}] = n + \sum_{i=1}^{n} \mathbb{E}[\mathbf{s}_{i}^{2}]$$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{i,k \in [m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{i,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{h(x_{j})=i} \cdot \mathbb{I}_{h(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{h(x_{j})=i} \cdot \mathbb{I}_{h(x_{k})=i}\right].$$
For $j = k$,
$$\mathbb{E}\left[\mathbb{I}_{h(x_{j})=i} \cdot \mathbb{I}_{h(x_{k})=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{h(x_{j})=i}\right)^{2}\right] = \Pr[h(x_{j})=i] = \frac{1}{n}.$$

• For
$$j \neq k$$
, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \Pr[\mathbf{h}(x_j)=i \cap \mathbf{h}(x_k)=i] = \frac{1}{n^2}$.

11

$$\mathbb{E}[\mathbf{s}_i^2] = \sum_{i,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_i)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=\underline{i}}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(\mathbf{x}_j)=i} \cdot \mathbb{I}_{\mathbf{h}(\mathbf{x}_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_i^2] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$$
$$= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^2}$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(\mathsf{x}_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(\mathsf{x}_{k})=i}\right]$$

$$= \underbrace{m \cdot \frac{1}{n}}_{l} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^{2}}$$

$$m (\mathbf{x}_{l})$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_i, x_h : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, S: # items stored at pos i.

- For j = k, $\mathbb{E} \left| \mathbb{I}_{\mathbf{h}(x_j) = i} \cdot \mathbb{I}_{\mathbf{h}(x_k) = i} \right| = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_i, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, **S**: space usage of two level hashing, \mathbf{s}_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right]$$
$$= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^{2}}$$
$$= \frac{m}{n} + \frac{m(m-1)}{n^{2}}$$

- For j = k, $\mathbb{E} \left| \mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i} \right| = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right]$$

$$= \frac{m \cdot 1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^{2}}$$

$$= \frac{m}{n} + \frac{m(m-1)}{n^{2}} \le 2 \text{ if we set } n = m.$$

$$\cdot \text{ For } j = k, \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \frac{1}{n}.$$

$$\cdot \text{ For } j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right] = \frac{1}{n^{2}}.$$

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(x_{k})=i}\right]$$

$$= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^{2}}$$

$$= \frac{m}{n} + \frac{m(m-1)}{n^{2}} \le 2 \text{ if we set } n = m.$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

Total Expected Space Usage: (if we set n = m)

$$\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[S_i^2]$$

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\begin{array}{ll}
\text{m} & \text{terms } + \text{total} \\
\text{m} & \text{$$

For
$$j \neq k$$
, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

Total Expected Space Usage: (if we set
$$n = m$$
)

Pr
$$(S > 6\pi) \le \frac{1}{2}^{i=1}$$

 x_i, x_k : stored items, m : # stored items, n : hash table size, h : random hash

function, **S**: space usage of two level hashing, \mathbf{s}_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(\mathsf{x}_{j})=i} \cdot \mathbb{I}_{\mathsf{h}(\mathsf{x}_{k})=i}\right]$$

$$= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^{2}}$$

$$= \frac{m}{n} + \frac{m(m-1)}{n^{2}} \le 2 \text{ if we set } n = m.$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

Total Expected Space Usage: (if we set n = m)

$$\mathbb{E}[S] = n + \sum_{i=1}^{n} \mathbb{E}[s_i^2] \le n + n \cdot 2 = 3n = 3m.$$

Near optimal space with O(1) query time!

 x_i, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, S: # items stored at pos i.

So Far: we have assumed a fully random hash function h(x) with $Pr[h(x) = i] = \frac{1}{n}$ for $i \in 1, ..., n$ and $\underline{h(x)}, \underline{h(y)}$ independent for $x \neq y$.

So Far: we have assumed a fully random hash function h(x) with $Pr[h(x) = i] = \frac{1}{n}$ for $i \in 1, ..., n$ and h(x), h(y) independent for $x \neq y$

To compute a random hash function we have to store a table of x values and their hash values. Would take at least O(m) space and O(m) query time to look up h(x) if we hash m values.
 Making our whole quest for O(1) query time pointless!

x	h(x)
x ₁	45
\mathbf{x}_2	1004
x_3	10
:	
X _m	12

What properties did we use of the randomly chosen hash function?

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \to [n]$ is pairwise independent if for all $i, j \in [n]$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \to [n]$ is pairwise independent if for all $i, j \in [n]$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Exercise 1: Check the two-level hashing proof to confirm that this property is all that was needed.

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \to [n]$ is pairwise independent if for all $i, j \in [n]$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Exercise 1: Check the two-level hashing proof to confirm that this property is all that was needed.

When $\mathbf{h}(x)$ and $\mathbf{h}(y)$ are chosen independently at random from [n], $\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}$ (so a fully random hash function is pairwise independent).

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \to [n]$ is pairwise independent if for all $i, j \in [n]$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Exercise 1: Check the two-level hashing proof to confirm that this property is all that was needed.

When $\mathbf{h}(x)$ and $\mathbf{h}(y)$ are chosen independently at random from [n], $\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}$ (so a fully random hash function is pairwise independent).

Efficient Implementation: Let p be a prime with $p \ge |U|$. Choose random $\mathbf{a}, \mathbf{b} \in [p]$ with $\mathbf{a} \ne 0$. Represent x as an integer and let

$$h(x) = (ax + b \mod p) \mod n$$
.

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A random hash function from $h: U \to [n]$ is two universal if:

$$\Pr[\mathsf{h}(x) = \mathsf{h}(y)] \le \frac{1}{n}.$$

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A random hash function from $h: U \to [n]$ is two universal if:

$$\Pr[\mathsf{h}(x) = \mathsf{h}(y)] \le \frac{1}{n}.$$

Think-Pair-Shair: Which is a more stringent requirement? 2-universal or pairwise independent?

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A random hash function from $h: U \to [n]$ is two universal if:

$$\Pr[\mathsf{h}(x) = \mathsf{h}(y)] \le \frac{1}{n}.$$

Think-Pair-Shair: Which is a more stringent equirement? 2-universal or pairwise independent?

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \to [n]$ is pairwise independent if for all $i, j \in [n]$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A random hash function from $h:U\to [n]$ is two universal if:

$$\Pr[\mathbf{h}(x) = \mathbf{h}(y)] \le \frac{1}{n} \cdot \bigwedge$$

Think-Pair-Shair: Which is a more stringent requirement? 2-universal or pairwise independent?

$$\Pr[h(x) = h(y)] = \sum_{i=1}^{n} \Pr[h(x) = i \cap h(y) = i] = n \cdot \frac{1}{n^{2}} = \frac{1}{n}.$$

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A random hash function from $h: U \to [n]$ is two universal if:

$$\Pr[\mathsf{h}(x) = \mathsf{h}(y)] \le \frac{1}{n}.$$

Think-Pair-Shair: Which is a more stringent requirement? 2-universal or pairwise independent?

$$\Pr[h(x) = h(y)] = \sum_{i=1}^{n} \Pr[h(x) = i \cap h(y) = i] = n \cdot \frac{1}{n^2} = \frac{1}{n}.$$

Remember: A fully random hash function is both 2-universal and pairwise independent. But it is not efficiently implementable.

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A random hash function from $h: U \to [n]$ is two universal if:

$$\Pr[\mathsf{h}(x) = \mathsf{h}(y)] \le \frac{1}{n}.$$

Think-Pair-Shair: Which is a more stringent requirement? 2-universal or pairwise independent?

$$\Pr[h(x) = h(y)] = \sum_{i=1}^{n} \Pr[h(x) = i \cap h(y) = i] = n \cdot \frac{1}{n^2} = \frac{1}{n}.$$

Remember: A fully random hash function is both 2-universal and pairwise independent. But it is not efficiently implementable.

Exercise 2: Rework the two-level hashing proof to show that 2-universality is in fact all that is needed.

Questions on Hash Tables?