COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2024.
Lecture 24 (Final Lecture!)

- Problem Set 5 can be submitted up to Thursday at 11:59pm.

- Exam is next Wednesday 12/18, from 10:30am-12:30pm in the
Totman Gym.

- Similar format to midterm. Closed book, no calculators.

- | am holding exam review office hours this Friday 12/13
10-11:30am in ELab 303 and next Tuesday 12/17 2:30pm-4pm in
LGRC A112.

- It would be really helpful if you could fill out SRTIs for this class.

Last Class:

- Analysis of gradient descent for convex and Lipschitz functions.

- Direct extension to constrained optimization via projected
gradient descent. Analysis for convex functions and convex
constraint sets.

- Motivation for stochastic gradient descent (SGD) for performing
gradient descent at scale.

This Class:

- Online optimization and online gradient descent.
- Analysis of online gradient descent.

- Application to analysis of SGD as a special case.

Gradient Descent At Scale

Typical Optimization Problem in Machine Learning: Given data
points Xi,...,X, and labels/observations y4, ...,y solve:

0 —argmlnLGX,y Zé
Gerd

The gradient of L(§, X) has one component per data point so can be
very expensive to compute.

Solution: Update using just a single data point, or a small batch of
data points per iteration.

- If the data point is chosen uniformly at random, the sampled
gradient is correct in expectation.

- 1 o =
Zw %)) = B [VEM 5.y = — - VL(, X).

- The key idea behind stochastic gradient descent (SGD).

Online Gradient Descent

SGD is closely related to online gradient descent.
In reality many learning problems are online.
- Websites optimize ads or recommendations to show users,
given continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn
from mistakes over time.

Want to minimize some global loss L(f, X), when data points are
presented in an online fashion X;,X>, ..., X, (like in streaming
algorithms)

Will view SGD as a special case: when data points are presented (by
design) in a random order.

Online Optimization Formal Setup

Online Optimization: In place of a single function f, we see a
different objective function at each step:

fiooo o fi: RES R

- At each step, first pick (play) a parameter vector 6().
- Then are told f; and incur cost f;(61).
- Goal: Minimize total cost 3¢, f:(61).

No assumptions on how fy,...,f; are related to each other!

Online Optimization Example

Ul design via online optimization.

' AddtoCart JJ Add to Cart

—

- Parameter vector #(): some encoding of the layout at step i.

- Functions fi,....f fi(8") = 1if user does not click ‘add to cart’
and £;(#") = 0 if they do click.

- Want to maximize number of purchases. l.e, minimize

S fi(0")

Online Optimization Example

Home pricing tools.

linear model
(%, 6)

) $275,000

X = [#baths, #beds, #floors ...]

- Parameter vector §0): coefficients of linear model at step .
- Functions fi,....fe fi(60) = (8) — price;)? revealed when home;
is listed or sold.

- Want to minimize total squared error 3_, f;(6)) (same as
classic least squares regression).

In normal optimization, we seek 6 satisfying:

f(B) < minf(8) + €

0

In online optimization we will ask for the same.

t t t
D D) <min > fi(0) + e =D fi(6°7) +
=1 - i=1

e is called the regret.

- This error metric is a bit ‘unfair’. Why?

- Comparing online solution to best fixed solution in
hindsight. € can be negative!

Online Gradient Descent

Assume that:

- f1,...,fr are all convex.
- Each f; is G-Lipschitz (i.e., |Vfi(6)|], < G for all 6))
- |60 — 67|, < R where 6() is the first vector chosen.

Online Gradient Descent

- Set step size n =
- Fori=1,...,t
. Play gu) and incur cost f;(61)).
. 9 (i41) 9 —n- ﬁfl(e_’(/))

s\m

10

Online Gradient Descent Analysis

~

7~

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., ft, OGD initialized with starting point (" within
radius R of #°7, using step size np = G\[, has regret bounded by:

lZf, (0 Z (0 *)] < RGVt

i=1

\.

Average regret goes to 0 and t — oo. ‘Sublinear regret’ or ‘no regret’
algorithm. No assumptions on fy,...,fi!

Step 1.1: For all i, V£ (90)7(00) — goffy < 100 =0TE_ 10000l | nc*

2n 2

Convexity = Step 1: For all |,

112 — ||g(i+1) — goff|2 G?
(1) offy < 109 — 6715 — | 5, n
(60 ~ fi(6) < T + -

n

Online Gradient Descent Analysis

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., ft, OGD initialized with starting point (" within
radius R of #°7, using step size np = G\[, has regret bounded by:

[ime@) - imeOff)] < RGVE

\. J

Cil e S T
2n

t , off|2 (i+1) _ goff||2 2
lzf,(@m)_z gﬂ ZHH =0T T 9
=1

=1

Step 1: For all i, fi(0)) — fi(0°F) < 12°= +18 —

12

Stochastic Gradient Descent

Recall: Stochastic gradient descent is an efficient offline
optimization method, seeking § with

fh) < m;nf(g) +e=f0")+e

Easily analyzed as a special case of online gradient descent!

13

Stochastic Gradient Descent

Assume that:

+ fis convex and decomposable as f(f) = "7, f;(6).
B, L(0,X) = XL, ((Mp(X), y))-
- Each f; is S-Lipschitz (i.e, |Vf;(8)|l < & for all §.)
- What does this imply about how Lipschitz f is?
- Initialize with 8 satisfying |01 — 6*||, < R.

Stochastic Gradient Descent

. i —_ R
Set step sizen = N
- Fori=1,...,t
- Pickrandomj; €1,...,n.

.
]

.l — pli) n- ﬁ]j (6T(i))

- Return § = 150 40,
1

Stochastic Gradient Descent

Stochastic Gradient Descent

'Bateh’ Gradient Descent

o 500 1000 1500 2000 2500 3000 3500

.
!

G = g0 — g f (@) vs. G+ = §0) — - G0
Note that: E[Vf; (01)] = 1Vf(61).
Analysis extends to any algorithm that takes the gradient step

in expectation (batch GD, randomly quantized, measurement

noise, differentially private GD, etc.) "

Stochastic Gradient Descent Analysis

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> Rifz iterations, n = %, and starting point within radius R
of 6*, outputs 8 satisfying: E[f()] < f(6*) + e.

Step 1: f(9) — f(0*) < 1SS [f(6D) — f(6*)] (you prove on Pset 5, 2.3)
E[SLI500) - 5,07 -
B [SL05,60) - (0]

Step 4: E[f(d) — f(6*)] < 2 -R- % V=R

——
OGD bound

Step 2: E[f(9) — f(6*)] <

—~|>

Step 3: E[f(0) — f(0")] <

~|>

~IS

<

SGD vs. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

VZJ“J vs. Vfi(6)

SGD vs. GD

When f(8) = 3L, £i(6) and |[V£(@)]. < §:

Theorem - SGD: After t > R(—" iterations outputs @ satisfying;

E[f(6)] < f(67) +e.

When [|Vf(0)]; < G:

Theorem - GD: After t > RI—GZ iterations outputs @ satisfying:

f(B) < f(07) +e.

IVl = IVAO) + .. + V(@)1 < T IVH@) <n- £ <G
When would this bound be tight?

Questions?

19

Course Review

20

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
want to learn more.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

21

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/e?)
dimensions while preserving pairwise distances.

- Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.

22

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set.

- Lots that we didn't cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods. Check
out CS 651 for more.

23

